7,319 research outputs found

    Vortex-boson duality in four space-time dimensions

    Full text link
    A continuum version of the vortex-boson duality in (3+1) dimensions is formulated and its implications studied in the context of a pair Wigner crystal in underdoped cuprate superconductors. The dual theory to a phase fluctuating superconductor (or superfluid) is shown to be a theory of bosonic strings interacting through a Kalb-Ramond rank-2 tensorial gauge field. String condensation produces Higgs mass for the gauge field and the expected Wigner crystal emerges as an interesting space-time analog of the Abrikosov lattice.Comment: 4 pages REVTeX; for related work and info visit http://www.physics.ubc.ca/~fran

    Implications of Constraints on Mass Parameters in the Higgs Sector of the Nonlinear Supersymmetric SU(5) Model

    Full text link
    The Higgs sector of the minimal nonlinear supersymmetric SU(5) model contains three mass parameters. Although these mass parameters are essentially free at the electroweak scale, they might have particular values if they evolve from a particular constraints at the GUT scale through the RG equations. By assuming a number of simple constraints on these mass parameters at the GUT scale, we obtain their values at the electroweak scale through the RG equations in order to investigate the phenomenological implications. Some of them are found to be consistent with the present experimental data.Comment: 23 pages, 10 figure

    Magnetic field induced charge and spin instabilities in cuprate superconductors

    Get PDF
    A d-wave superconductor, subject to strong phase fluctuations, is known to suffer an antiferromagnetic instability closely related to the chiral symmetry breaking in (2+1)-dimensional quantum electrodynamics (QED3). On the basis of this idea we formulate a "QED3 in a box" theory of local instabilities of a d-wave superconductor in the vicinity of a single pinned vortex undergoing quantum fluctuations around its equilibrium position. As a generic outcome we find an incommensurate 2D spin density wave forming in the neighborhood of a vortex with a concomitant "checkerboard" pattern in the local electronic density of states, in agreement with recent neutron scattering and tunneling spectroscopy measurements.Comment: 4 pages REVTeX + 2 PostScript figures included in text. Version to appear in PRL (minor stylistic changes, references updated). For related work and info visit http://www.physics.ubc.ca/~fran

    Distributions of inherent structure energies during aging

    Full text link
    We perform extensive simulations of a binary mixture Lennard-Jones system subjected to a temperature jump in order to study the time evolution of fluctuations during aging. Analyzing data from 1500 different aging realizations, we calculate distributions of inherent structure energies for different aging times and contrast them with equilibrium. We find that the distributions initially become narrower and then widen as the system equilibrates. For deep quenches, fluctuations in the glassy system differ significantly from those observed in equilibrium. Simulation results are partially captured by theoretical predictions only when the final temperature is higher than the mode coupling temperature.Comment: 5 pages, 4 figure

    Center-surround filters emerge from optimizing predictivity in a free-viewing task

    No full text
    In which way do the local image statistics at the center of gaze differ from those at randomly chosen image locations? In 1999, Reinagel and Zador [1] showed that RMS contrast is significantly increased around fixated locations in natural images. Since then, numerous additional hypotheses have been proposed, based on edge content, entropy, self-information, higher-order statistics, or sophisticated models such as that of Itti and Koch [2]. While these models are rather different in terms of the used image features, they hardly differ in terms of their predictive power. This complicates the question of which bottom-up mechanism actually drives human eye movements. To shed some light on this problem, we analyze the nonlinear receptive fields of an eye movement model which is purely data-driven. It consists of a nonparametric radial basis function network, fitted to human eye movement data. To avoid a bias towards specific image features such as edges or corners, we deliberately chose raw pixel values as the input to our model, not the outputs of some filter bank. The learned model is analyzed by computing its optimal stimuli. It turns our that there are two maximally excitatory stimuli, both of which have center-surround structure, and two maximally inhibitory stimuli which are basically flat. We argue that these can be seen as nonlinear receptive fields of the underlying system. In particular, we show that a small radial basis function network with the optimal stimuli as centers predicts unseen eye movements as precisely as the full model. The fact that center-surround filters emerge from a simple optimality criterion—without any prior assumption that would make them more probable than e.g. edges, corners, or any other configuration of pixels values in a square patch—suggests a special role of these filters in free-viewing of natural images

    Relativistic Coulomb Problem: Analytic Upper Bounds on Energy Levels

    Get PDF
    The spinless relativistic Coulomb problem is the bound-state problem for the spinless Salpeter equation (a standard approximation to the Bethe--Salpeter formalism as well as the most simple generalization of the nonrelativistic Schr\"odinger formalism towards incorporation of relativistic effects) with the Coulomb interaction potential (the static limit of the exchange of some massless bosons, as present in unbroken gauge theories). The nonlocal nature of the Hamiltonian encountered here, however, renders extremely difficult to obtain rigorous analytic statements on the corresponding solutions. In view of this rather unsatisfactory state of affairs, we derive (sets of) analytic upper bounds on the involved energy eigenvalues.Comment: 12 pages, LaTe

    Duality and the vibrational modes of a Cooper-pair Wigner crystal

    Full text link
    When quantum fluctuations in the phase of the superconducting order parameter destroy the off-diagonal long range order, duality arguments predict the formation of a Cooper pair crystal. This effect is thought to be responsible for the static checkerboard patterns observed recently in various underdoped cuprate superconductors by means of scanning tunneling spectroscopy. Breaking of the translational symmetry in such a Cooper pair Wigner crystal may, under certain conditions, lead to the emergence of low lying transverse vibrational modes which could then contribute to thermodynamic and transport properties at low temperatures. We investigate these vibrational modes using a continuum version of the standard vortex-boson duality, calculate the speed of sound in the Cooper pair Wigner crystal and deduce the associated specific heat and thermal conductivity. We then suggest that these modes could be responsible for the mysterious bosonic contribution to the thermal conductivity recently observed in strongly underdoped ultraclean single crystals of YBCO tuned across the superconductor-insulator transition.Comment: 14 pages; 3 figures; corrected the sample size value; version 3 to appear in PR

    Large sulfur isotope fractionations in Martian sediments at Gale crater

    Get PDF
    Variability in the sulfur isotopic composition in sediments can reflect atmospheric, geologic and biological processes. Evidence for ancient fluvio-lacustrine environments at Gale crater on Mars and a lack of efficient crustal recycling mechanisms on the planet suggests a surface environment that was once warm enough to allow the presence of liquid water, at least for discrete periods of time, and implies a greenhouse effect that may have been influenced by sulfur-bearing volcanic gases. Here we report in situ analyses of the sulfur isotopic compositions of SO_2 volatilized from ten sediment samples acquired by NASA’s Curiosity rover along a 13 km traverse of Gale crater. We find large variations in sulfur isotopic composition that exceed those measured for Martian meteorites and show both depletion and enrichment in ^(34)S. Measured values of δ^(34)S range from −47 ± 14‰ to 28 ± 7‰, similar to the range typical of terrestrial environments. Although limited geochronological constraints on the stratigraphy traversed by Curiosity are available, we propose that the observed sulfur isotopic signatures at Gale crater can be explained by equilibrium fractionation between sulfate and sulfide in an impact-driven hydrothermal system and atmospheric processing of sulfur-bearing gases during transient warm periods
    • …
    corecore