14 research outputs found

    CD68, CD163, and matrix metalloproteinase 9 (MMP-9) co-localization in breast tumor microenvironment predicts survival differently in ER-positive and -negative cancers

    No full text
    Abstract Background The role of tumor-associated macrophages (TAMs) in the cancer immune landscape and their potential as treatment targets or modulators of response to treatment are gaining increasing interest. TAMs display high molecular and functional complexity. Therefore their objective assessment as breast cancer biomarkers is critical. The aims of this study were to objectively determine the in situ expression and significance of TAM biomarkers (CD68, CD163, and MMP-9) in breast cancer and to identify subclasses of patients who could benefit from TAM-targeting therapies. Methods We measured CD68, CD163, and MMP-9 protein expression in formalin-fixed paraffin-embedded tissues of breast carcinomas represented in tissue microarray format using multiplexed quantitative immunofluorescence (QIF) in two independent Yale cohorts: cohort A—n = 398, estrogen receptor–positive (ER+) and ER− cases—and the triple-negative breast cancer (TNBC)-only cohort B (n = 160). Associations between macrophage markers, ER status, and survival were assessed. Protein expression measured by QIF was compared with mRNA expression data from the METABRIC study. Results All three macrophage markers were co-expressed, displaying higher expression in ER− cancers. High pan-macrophage marker CD68 correlated with poorer overall survival (OS) only in ER− cases of cohort A (P = 0.02). High expression of CD163 protein in TAMs was associated with improved OS in ER− cases (cohort A, P = 0.03 and TNBC cohort B, P = 0.04, respectively) but not in ER+ cancers. MMP-9 protein was not individually associated with OS. High expression of MMP-9 in the CD68+/CD163+ TAMs was associated with worse OS in ER+ tumors (P <0.001) but not in ER− cancers. In the METABRIC dataset, mRNA levels followed the co-expression pattern observed in QIF but did not always show the same trend regarding OS. Conclusions Macrophage activity markers correlate with survival differently in ER+ and ER− cancers. The association between high co-expression and co-localization of MMP-9/CD163/CD68 and poor survival in ER+ cancers suggests that these cancers may be candidates for macrophage-targeted therapies

    Effects of Radiation on the Tumor Microenvironment.

    No full text
    A malignant tumor consists of malignant cells as well as a wide array of normal host tissues including stroma, vasculature, and immune infiltrate. The interaction between cancer and these host tissues is critical as these host tissues play a variety of roles in supporting or resisting disease progression. Radiotherapy (RT) has direct effects on malignant cells, but, also, critically important effects on these other components of the tumor microenvironment (TME). Given the growing role of immune checkpoint inhibitors and other immunotherapy strategies, understanding how RT affects the TME, particularly the immune compartment, is essential to advance RT in this new era of cancer therapy. The interactions between RT and the TME are complex, affecting the innate and adaptive arms of the immune system. RT can induce both proinflammatory effects and immune suppressive effects that can either promote or impede antitumor immunity. It is likely that the initial proinflammatory effects of RT eventually lead to rebound immune-suppression as chronic inflammation sets in. The exact kinetics and nature of how RT changes the TME likely depends on timing, dose, fractionation, site irradiated, and tumor type. With increased understanding of the effects of RT on the TME, in the future it is likely that we will be able to personalize RT by varying the dose, site, and timing of intervention to generate the desired response to partner with immunotherapy strategies

    Tumor cell SYK expression modulates the tumor immune microenvironment composition in human cancer via TNF-α dependent signaling

    No full text
    Background The expression of SYK in cancer cells has been associated with both tumor promoting and tumor suppressive effects. Despite being proposed as anticancer therapeutic target, the possible role of SYK in modulating local adaptive antitumor immune responses remains uncertain. Using detailed analysis of primary human tumors and in vitro models, we reveal the immunomodulatory effect of SYK protein in human solid cancer.Methods We spatially mapped SYK kinase in tumor cells, stromal cells and tumor-infiltrating leukocytes (TILs) in 808 primary non-small cell lung carcinomas (NSCLCs) from two cohorts and in 374 breast carcinomas (BCs) from two independent cohorts. We established the associations of localized SYK with clinicopathologic variables and outcomes. The immunomodulatory role of SYK on tumor cells was assessed using in vitro cytokine stimulation, transcriptomic analysis and selective SYK blockade using a small molecule inhibitor. Functional responses were assessed using cocultures of tumor cells with peripheral blood lymphocytes. T cell responses in baseline and post-treatment biopsies from patients with BC treated with a SYK inhibitor in a phase I clinical trial were also studied.Results Elevated tumor cell or leukocyte SYK expression was associated with high CD4+ and CD8+ TILs and better outcome in both NSCLC and BC. Tumor cell SYK was associated with oncogenic driver mutations in EGFR or KRAS in lung adenocarcinomas and with triple negative phenotype in BC. In cultured tumor cells, SYK was upregulated by TNFα and required for the TNFα-induced proinflammatory responses and T cell activation. SYK blockade after nivolumab in a phase I clinical trial including three patients with advanced triple negative BC reduced TILs and T cell proliferation. Our work establishes the proinflammatory function of tumor cell SYK in lung and breast cancer. SYK signaling in cultured tumor cells is required for T cell activation and SYK blockade limits adaptive antitumor immune responses and tumor rejection in patients with cancer.Conclusions Together, our results establish the immunomodulatory role of SYK expression in human solid tumors. This information could be used to develop novel biomarkers and/or therapeutic strategies

    Spatially Resolved and Quantitative Analysis of VISTA/PD-1H as a Novel Immunotherapy Target in Human Non-Small Cell Lung Cancer

    No full text
    Purpose: Determine the localized expression pattern and clinical significance of VISTA/PD-1H in human non-small cell lung cancer (NSCLC). Experimental Design: Using multiplex quantitative immunofluorescence (QIF), we performed localized measurements of VISTA, PD-1, and PD-L1 protein in 758 stage I-IV NSCLCs from 3 independent cohorts represented in tissue microarray format. The targets were selectively measured in cytokeratinthorn tumor epithelial cells, CD3(+) T cells, CD4(+) T-helper cells, CD8(+) cytotoxic T cells, CD20(+) B lymphocytes and CD68(+) tumor-associated macrophages. We determined the association between the targets, clinicopathological/molecular variables and survival. Genomic analyses of lung cancer cases from TCGA were also performed. Results: VISTA protein was detected in 99% of NSCLCs with a predominant membranous/cytoplasmic staining pattern. Expression in tumor and stromal cells was seen in 21% and 98% of cases, respectively. The levels of VISTA were positively associated with PD-L1, PD-1, CD8(+) T cells and CD68(+) macrophages. VISTA expression was higher in T-lymphocytes than in macrophages; and in cytotoxic T cells than in T-helper cells. Elevated VISTA was associated with absence of EGFR mutations and lower mutational burden in lung adenocarcinomas. Presence of VISTA in tumor compartment predicted longer 5-year survival. Conclusions: VISTA is frequently expressed in human NSCLC and shows association with increased tumor-infiltrating lymphocytes, PD-1 axis markers, specific genomic alterations and outcome. These results support the immunomodulatory role of VISTA in human NSCLC and suggests its potential as therapeutic target. (C) 2017 AACR

    Early versus deferred anti-SARS-CoV-2 convalescent plasma in patients admitted for COVID-19: A randomized phase II clinical trial

    No full text
    BACKGROUND: Convalescent plasma (CP), despite limited evidence on its efficacy, is being widely used as a compassionate therapy for hospitalized patients with COVID-19. We aimed to evaluate the efficacy and safety of early CP therapy in COVID-19 progression. METHODS AND FINDINGS: The study was an open-label, single-center randomized clinical trial performed in an academic medical center in Santiago, Chile, from May 10, 2020, to July 18, 2020, with final follow-up until August 17, 2020. The trial included patients hospitalized within the first 7 days of COVID-19 symptom onset, presenting risk factors for illness progression and not on mechanical ventilation. The intervention consisted of immediate CP (early plasma group) versus no CP unless developing prespecified criteria of deterioration (deferred plasma group). Additional standard treatment was allowed in both arms. The primary outcome was a composite of mechanical ventilation, hospitalization for &gt;14 days, or death. The key secondary outcomes included time to respiratory failure, days of mechanical ventilation, hospital length of stay, mortality at 30 days, and SARS-CoV-2 real-time PCR clearance rate. Of 58 randomized patients (mean age, 65.8 years; 50% male), 57 (98.3%) completed the trial. A total of 13 (43.3%) participants from the deferred group received plasma based on clinical aggravation. We failed to find benefit in the primary outcome (32.1% versus 33.3%, odds ratio [OR] 0.95, 95% CI 0.32–2.84, p &gt; 0.999) in the early versus deferred CP group. The in-hospital mortality rate was 17.9% versus 6.7% (OR 3.04, 95% CI 0.54–17.17 p = 0.246), mechanical ventilation 17.9% versus 6.7% (OR 3.04, 95% CI 0.54–17.17, p = 0.246), and prolonged hospitalization 21.4% versus 30.0% (OR 0.64, 95% CI, 0.19–2.10, p = 0.554) in the early versus deferred CP group, respectively. The viral clearance rate on day 3 (26% versus 8%, p = 0.204) and day 7 (38% versus 19%, p = 0.374) did not differ between groups. Two patients experienced serious adverse events within 6 hours after plasma transfusion. The main limitation of this study is the lack of statistical power to detect a smaller but clinically relevant therapeutic effect of CP, as well as not having confirmed neutralizing antibodies in donor before plasma infusion. CONCLUSIONS: In the present study, we failed to find evidence of benefit in mortality, length of hospitalization, or mechanical ventilation requirement by immediate addition of CP therapy in the early stages of COVID-19 compared to its use only in case of patient deterioration
    corecore