1,180 research outputs found

    Continuous Melting of a "Partially Pinned" Two-Dimensional Vortex Lattice in a Square Array of Pinning Centers

    Get PDF
    The structure and equilibrium properties of a two-dimensional system of superconducting vortices in a periodic pinning potential with square symmetry are studied numerically. For a range of the strength of the pinning potential, the low-temperature crystalline state exhibits only one of the two basic periodicities (in the xx- and yy-directions) of the pinning potential. This ``partially pinned'' solid undergoes a continuous melting transition to a weakly modulated liquid as the temperature is increased. A spin model, constructed using symmetry arguments, is shown to reproduce the critical behavior at this transition.Comment: 5 pages, 4 figure

    Photoproduction of charm near threshold

    Full text link
    Charm and bottom production near threshold is sensitive to the multi-quark, gluonic, and hidden-color correlations of hadronic and nuclear wavefunctions in QCD since all of the target's constituents must act coherently within the small interaction volume of the heavy quark production subprocess. Although such multi-parton subprocess cross sections are suppressed by powers of 1/mQ21/m^2_Q, they have less phase-space suppression and can dominate the contributions of the leading-twist single-gluon subprocesses in the threshold regime. The small rates for open and hidden charm photoproduction at threshold call for a dedicated facility.Comment: 5 pages 5 figures Changes: 1- Added refs 24,25; 2- Added two sentences, top of column 2 of page 3, on the definition of x, its range and the domain of validity of the mode

    Magnetic-field dependence of electron spin relaxation in n-type semiconductors

    Full text link
    We present a theoretical investigation of the magnetic field dependence of the longitudinal (T1T_1) and transverse (T2T_2) spin relaxation times of conduction band electrons in n-type III-V semiconductors. In particular, we find that the interplay between the Dyakonov-Perel process and an additional spin relaxation channel, which originates from the electron wave vector dependence of the electron gg-factor, yields a maximal T2T_2 at a finite magnetic field. We compare our results with existing experimental data on n-type GaAs and make specific additional predictions for the magnetic field dependence of electron spin lifetimes.Comment: accepted for publication in PRB, minor changes to previous manuscrip

    The effects of grain shape and frustration in a granular column near jamming

    Full text link
    We investigate the full phase diagram of a column of grains near jamming, as a function of varying levels of frustration. Frustration is modelled by the effect of two opposing fields on a grain, due respectively to grains above and below it. The resulting four dynamical regimes (ballistic, logarithmic, activated and glassy) are characterised by means of the jamming time of zero-temperature dynamics, and of the statistics of attractors reached by the latter. Shape effects are most pronounced in the cases of strong and weak frustration, and essentially disappear around a mean-field point.Comment: 17 pages, 19 figure

    About the Functional Form of the Parisi Overlap Distribution for the Three-Dimensional Edwards-Anderson Ising Spin Glass

    Full text link
    Recently, it has been conjectured that the statistics of extremes is of relevance for a large class of correlated system. For certain probability densities this predicts the characteristic large xx fall-off behavior f(x)exp(aex)f(x)\sim\exp (-a e^x), a>0a>0. Using a multicanonical Monte Carlo technique, we have calculated the Parisi overlap distribution P(q)P(q) for the three-dimensional Edward-Anderson Ising spin glass at and below the critical temperature, even where P(q)P(q) is exponentially small. We find that a probability distribution related to extreme order statistics gives an excellent description of P(q)P(q) over about 80 orders of magnitude.Comment: 4 pages RevTex, 3 figure

    Absence of magnetic field effect on static magnetic order in electron-doped superconductor Nd_{1.86}Ce_{0.14}CuO_4

    Full text link
    Neutron-scattering experiments were performed to study the magnetic field effect on the electron-doped cuprate superconductor Nd_{1.86}Ce_{0.14}CuO_4, which shows the coexistence of magnetic order and superconductivity. The (1/2 3/2 0) magnetic Bragg intensity, which mainly originates from the order of both the Cu and Nd moments at low temperatures, shows no magnetic field dependence when the field is applied perpendicular to the CuO_{2} plane up to 10 T above the upper critical field. This result is significantly different from that reported for the hole-doped cuprate superconductors, in which the quasi-static magnetic order is noticeably enhanced under a magnetic field.Comment: 4 pages, 3 figure

    Quasiparticle Scattering Interference in High Temperature Superconductors

    Full text link
    We propose that the energy-dependent spatial modulation of the local density of states seen by Hoffman, et al [hoff2] is due to the scattering interference of quasiparticles. In this paper we present the general theoretical basis for such an interpretation and lay out the underlying assumptions. As an example, we perform exact T-matrix calculation for the scattering due to a single impurity. The results of this calculation is used to check the assumptions, and demonstrate that quasiparticle scattering interference can indeed produce patterns similar to those observed in Ref. [hoff2].Comment: RevTex4 twocolumn, 4 pages, 3 figures. Figs.2-3 virtually embedded (bacause of too big size) while jpg files available in the postscript/source package. Further polishe

    Three disks in a row: A two-dimensional scattering analog of the double-well problem

    Full text link
    We investigate the scattering off three nonoverlapping disks equidistantly spaced along a line in the two-dimensional plane with the radii of the outer disks equal and the radius of the inner disk varied. This system is a two-dimensional scattering analog to the double-well-potential (bound state) problem in one dimension. In both systems the symmetry splittings between symmetric and antisymmetric states or resonances, respectively, have to be traced back to tunneling effects, as semiclassically the geometrical periodic orbits have no contact with the vertical symmetry axis. We construct the leading semiclassical ``creeping'' orbits that are responsible for the symmetry splitting of the resonances in this system. The collinear three-disk-system is not only one of the simplest but also one of the most effective systems for detecting creeping phenomena. While in symmetrically placed n-disk systems creeping corrections affect the subleading resonances, they here alone determine the symmetry splitting of the 3-disk resonances in the semiclassical calculation. It should therefore be considered as a paradigm for the study of creeping effects. PACS numbers: 03.65.Sq, 03.20.+i, 05.45.+bComment: replaced with published version (minor misprints corrected and references updated); 23 pages, LaTeX plus 8 Postscript figures, uses epsfig.sty, espf.sty, and epsf.te

    Avalanches in the Weakly Driven Frenkel-Kontorova Model

    Full text link
    A damped chain of particles with harmonic nearest-neighbor interactions in a spatially periodic, piecewise harmonic potential (Frenkel-Kontorova model) is studied numerically. One end of the chain is pulled slowly which acts as a weak driving mechanism. The numerical study was performed in the limit of infinitely weak driving. The model exhibits avalanches starting at the pulled end of the chain. The dynamics of the avalanches and their size and strength distributions are studied in detail. The behavior depends on the value of the damping constant. For moderate values a erratic sequence of avalanches of all sizes occurs. The avalanche distributions are power-laws which is a key feature of self-organized criticality (SOC). It will be shown that the system selects a state where perturbations are just able to propagate through the whole system. For strong damping a regular behavior occurs where a sequence of states reappears periodically but shifted by an integer multiple of the period of the external potential. There is a broad transition regime between regular and irregular behavior, which is characterized by multistability between regular and irregular behavior. The avalanches are build up by sound waves and shock waves. Shock waves can turn their direction of propagation, or they can split into two pulses propagating in opposite directions leading to transient spatio-temporal chaos. PACS numbers: 05.70.Ln,05.50.+q,46.10.+zComment: 33 pages (RevTex), 15 Figures (available on request), appears in Phys. Rev.
    corecore