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Financial returns are known to be nonnormal and tend to have fat-tailed distributions. This article
presents a simple methodology that accurately estimates the degree of tail fatness, characterized by the
tail index, in small samples. Our method is a weighted average of Hill estimators for different threshold
values that corrects for the small-sample bias apparent in the latter. Using this estimator we produce
tail-index estimates for returns on exchange rates that are close to nonbiased estimates obtained from
extremely large datasets. The results indicate that many documented conclusions concerning the tail
behavior of financial series are likely to have overestimated the tail fatness in small samples.
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It is a well-known stylized fact that financial returns tend
to have empirical distributions that exhibit fatter tails than the
normal distribution. [See Jansen and de Vries (1991), Koedijk,
Stork, and de Vries (1992), Koedijk and Kool (1994), Loretan
and Phillips (1994), and Kearns and Pagan (1997) for vari-
ous recent contributions. The idea that autoregressive condi-
tional heteroscedasticity (ARCH) effects may cause fat tails
was discussed by, among others, Bera and Higgins (1993) and
Bolierslev, Engle, and Nelson (1994).] The observed tail fat-
ness of returns has important implications for economic mod-
els of asset returns. Typically, these models assume normality.
Empirical measures of uncertainty with respect to financial
asset movements in these models are distribution dependent.
For instance, downside risk measures such as Value at Risk
{VaR) focus directly on the (left) tail of the return distribution.
Since the normal distribution is mostly used to fit the empiri-
cal return distribution, any discrepancy between the hypothe-
sized normal tails and the actual fat tails potentially leads to
significant errors. [Jorion (1997) and Huisman, Koedijk, and
Pownall (1998) all addressed the errors in vector autoregres-
sion (VAR) estimates due to a discrepancy between assumed
normality and the observed fatter tails.] If the distribution of
returns is heavily nonnormal, then asset movements and spec-
ulative risks must be assessed using other measures than vari-
ance alone.

To account for tail fatness, financial returns are often mod-
eled by a specific (nonnormal) distribution that is characterized
by fat tails, like the Student-t or Stable distribution. Alterna-
tively, generalized ARCH (GARCH) models are used to model
financial returns. In the presence of (G)ARCH effects, the con-
ditional variance of financial returns is time dependent. Peri-
ods with high conditional variances and corresponding large
movements in the asset’s value alternate with low-variance
periods. it can be shown that such GARCH effects—even
when the returns are drawn from a conditionally normal
distribution—Ilead to an unconditional distribution with fatter
tails than in the case of a time-independent unconditional nor-
mal distribution.

As argued previously, knowledge of the tail behavior of
returns is of relevance in its own right. Therefore, we concen-

Exchange rates; Fat tails; Tail-index estimation.

trate on the tail shape of the empirical distribution of finan-
cial returns. We directly estimate the tail index or maximum
exponent rather than trying to fully specify the underlying true
parametric distribution or to estimate the appropriate GARCH
process. The tail index is a measure of the amount of tail
fatness of the distribution under investigation and fits within
extreme value theory (EVT). EVT investigates the distribution
of the tail observations in large samples. In the limit, the tail
shape follows a Pareto law for a general class of fat-tailed
distributions. This limit law is characterized by the tail index,
which happens to be one-to-one with the number of moments
that exist. An important gain of the estimation procedure is
that one can nest and test for different tail sizes. The loss con-
sists of information about the center characteristics of the dis-
tribution. Given the predominance of outliers in asset-return
series, however, one may benefit from this trade-off.

The Hill (1975) estimator is best known and most often
applied, due to its easy implementation and asymptotic unbi-
asedness. Consequently, it has become the benchmark in the
literature. However, it is biased in relatively small samples.
Recently, alternative estimators have been proposed. Pictet,
Dacorogna, and Miiller (1996) gave an overview and studied
the performance of a number of these estimators. They con-
cluded that many estimators perform rather well for extremely
large sample sizes but that all suffer severely from small-
sample bias. As a result, the empirical applicability of the
currently available tail-index estimators is limited to cases in
which a large sample is available, either in the form of high-
frequency data or in the form of a long sampling period.
However, in many practical cases this condition is not ful-
filled, Moreover, even when a long sample is available, it may
be interesting to split the sample and analyze whether the tail
structure of the sample has changed over time.

An important part of the bias in the preceding methods
stems from the selection of the appropriate number of tail
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observations to include in the estimation process. If one
includes too many observations, the variance of the estimate
is reduced at the expense of a bias in the tail estimate.
This results from including too many observations from the
central range. With too few observations, the bias declines but
the variance of the estimate becomes too large. Application
of the Hill and other estimators requires the a priori selection
of the number of tail observations to include. The estimators
themselves do not provide such an optimal number. [Jansen
and de Vries (1991) and Koedijk and Kool (1994) used a
method that requires an assumption on the underlying return
distribution. Beirlant, Vynckier, and Teugels (1996, BVT)
presented a method that is independent of the underlying
distribution.]

In this article, we propose an alternative methodology to
correct for the small-sample bias in tail-index estimates. Our
method does not condition its tail estimate on one specific
number of tail observations as do Hill, BVT, and other tail-
index estimators. Instead, our method exploits information
obtained from a set of Hill estimates each conditioned on a
different number of tail observations. The result is a weighted
average of a set of conventional Hill estimators, with weights
obtained by simple least squares techniques.

The plan of this article is as follows. Section 1 reviews
the Hill estimator and provides a theoretical motivation and
explanation of the adjusted methodology. In Section 2 we
present results from simulation studies to show the adequacy
of our estimator with respect to different distributions and
GARCH processes. It is shown that the estimator reduces the
bias in Hill-based tail-index estimates dramatically for sam-
ples as small as 100 observations, Section 3 shows tail-index
estimates for returns on five main U.S. dollar exchange rates.
The results are compared with conventional Hill estimates.
Section 4 concludes.

1. METHODOLOGY

In this section, we first briefly discuss the conventional Hill
estimator, which suffers from severe small-sample bias. Sub-
sequently, we propose a simple alternative method to obtain
unbiased small-sample tail-index estimates. This estimator
is based on the conventional Hill method and exploits the
approximately linear relation between & and the magnitude of
the bias.

1.1 The Hill Estimator

Suppose a sample of n positive independent observations
is drawn from some unknown fat-tailed distribution. Let
x(i) be the ith-order statistic such that x(i) > x(i —1) for
i=2,...,n. Suppose that we choose to include k observa-
tions from the right tail in our estimate. Hill (1975) proposed
the following estimator for vy:

k
(k) = % Sin(r(n—j+1)) ~Inx(e =) (1)
Jj=1

which is a maximum likelihood estimator for a conditional
Pareto distribution, taking the (k + l)th observation as the
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threshold. The single difficulty in using Hill’s estimator is
the nontrivial choice of k. Extending Hall (1990), Dacarogna,
Miiller, Pictet, and de Vries (1995) presented an asymptotic
approximation of the bias in the Hill estimator for the follow-
ing class of distribution functions:

F(x)=1-ax"(1+bxP), (2)
where « and S are larger than 0 and a and b are real numbers.
Dacarogna et al. (1995) noted that Equation (2) provides the
second-order expansion of the cumulative distribution func-
tion (cdf) for almost every fat-tailed distribution. For this
class of distribution functions, Hall showed that the asymp-
totic expected value of the Hill estimator for a given k is
approximated by

8
SLE AR
Bvm~i- (D) o
It is clear from Equation (3) that the bias increases in k. [This
is not true for all distributions. The cdf of the Pareto distribu-
tion reads F(x) = | —x™*, which directly fits in (2) for a equal
to 1 and b equal to 0. In this case, the bias function in (3) is 0.]
However, the choice of k also affects the variance of the tail-
index estimate. Hall (1990) derived the asymptotic variance of
the Hill estimator for the class of distribution functions (2) as

var(y(k)) ~ (4)

ka?’
The conclusion from Equations (3) and (4) is that a small k is
preferable from the perspective of unbiasedness but a large & is
preferred from an efficiency viewpoint. The trade-off between
bias and precision is apparent. An important observation from
the bias function (3) is that one always faces a bias for any &
exceeding 0. We shall use this latter fact to present an alter-
native method that circumvents the selection of k.

Moreover, in line with Hall (1990), we impose the restric-
tion & = B3 to approximate the asymptotic bias of the Hill esti-
mator. Implicitly, this makes the asymptotic bias linear in k.
The assumption o = 3 is literally true only for the limiting
extreme value distribution and not for general distributions and
small sample size. Dacarogna et al. (1995) stated, for instance,
that in the case of Student-z distributions o equals the number
of degrees of freedom of the distribution, while 8 equals 2.
However, simulation experiments by Dacarogna et al. (1995)
showed that their tail-index estimates using Hall’s bootstrap-
ping method are quite insensitive to the choice of B. They
concluded, “even large errors in the assumed value of B will
not lead 10 aberrant estimates of . Since actual data simula-
tions using Student-¢ distributions with degrees of freedom in
excess of 2 yield approximately linear bias terms over a wide
range of k, imposing the constraint « = 3 appears warranted.

1.2 An Alternative Approach

To improve on the conventional Hill estimator, we pro-
pose to exploit an important characteristic of the bias func-
tion. For values of & smaller than a threshold value x, the
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v estimates are seen to increase almost linearly in & justi-
fying, indeed imposing, the restriction & = B in (3). (Unre-
ported results show that a similar linear pattern is observed
for other fat-tailed distributions like the Pareto and Burr dis-
tributions. These are available from the authors on request.)
For larger k, the y pattern depends on the exponent B/« in
(3). This suggests that for & small enough the bias term can
be approximated by a linear function. [We have also estimated
nonlinear regression models based on the functional form for
the asymptotic bias in (3). The results were much worse than
those obtained by the linear specification. They confirm the
appropriateness of imposing the condition ¢ = 8 in (3) as was
done by Hall (1990).] In this case, Equation (3) can be trans-
formed as follows:

y(k)=Bo+Bik+ek), k=1,....k

(5)

Instead of selecting one optimal k to estimate the tail index
of the distribution under consideration, we propose to compute
Hill estimates of y(k) for k£ from 1 to «. Subsequently, the
vector of computed y(k)’s is used to estimate the parameters
in Equation (5). In the previous section, we already argued
that an unbiased estimate of -y could be obtained only for
approaching 0. Evaluation of Equation (5) for & approaching
0 yields an unbiased estimate of v equal to the intercept f3,.
" Applying this procedure solves the bias-variance trade-off by
using the information from & whole range of conventional Hill
estimates for different values of k to obtain an estimate for the
tail index. x must be chosen such that the function y(k) for
k=1,...,k is approximately linear. However, we will show
that estimates of the tail index are quite robust with respect to
the choice of k.

1.3 Econometric Considerations

Although the parameters in (5) can be estimated vsing ordi-
nary least squares (QLS), two issues complicate the proce-
dure. First, Equation (4) indicates that the variance of Hill
estimates y(k) is not constant for different k. The error term
e(k) in Equation (5) is heteroscedastic. Therefore, we prefer
a weighted least squares (WLS) approach to correct for this
form of heteroscedasticity.

Second, an overlapping data problem exists due (o the con-
struction of y(k). The variables y(k) are correlated, in terms
of %, since estimates y(k) and y(m), where k # m, are based
on 14 min(k,m) common observations; see Equation (1).
Consequently, the usual formulas for the regular standard
errors both for the OLS and WLS estimates are inappropriate.
Therefore, in the appendix we provide an appropriate alterna-
tive to calculate standard errors using the asymptotic normality
of order statistics. Notice also that OLS and WLS do not yield
fully efficient estimates of 3,. Feasible GLS using the optimal
weighting matrix (i.e., a consistent estimate of the inverse of
the disturbance covariance matrix) would yield an asymptoti-
cally efficient estimate, but it has the drawback of requiring an
estimate of the full error covariance matrix. (Unreported sim-
ulation results show that OLS and GLS yield estimates with
similar biases for small 2. In that case, the precision of GLS
is lower than that of OLS. This small-sample phenomenon is
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probably due to the nonlinearity of GLS. A comparison of the
asymptotic standard errors of OLS and GLS for the Pareto
distribution indicates that significant efficiency gains can be
expected from using GLS instead of OLS in large samples.)

1.3.1 Point Estimates. For the OLS-based estimator, we
first write (5) in the following matrix notation:

Y =ZB+e, 6

where the vector y* consists of y(k), k=1,...,k and Z is
a (k x 2) matrix with ones in the first column and the vector
{1,2,...,k} in the second. As argued before, we need to cor-
rect for the heteroscedasticity in the error term &. Equation (4)
reveals that the variance of the Hill estimator is inversely
related to k. We propose to apply WLS with a (k x k) weight-
ing matrix W. W has {~/1, v/2, .. ., /k} as diagonal elements
and zeros elsewhere. Transformation of Equation (6) through
premultiplication with matrix W yields the following WLS
estimate for 3

by, = (ZWWZ) ' Z'W Wy* @)
The estimated tail index vy equals the first element of the vec-
tor b,,,. Due to the form of the matrices Z and W, it can be
easily shown that the modified Hill estimator is a weighted
average of the traditional Hill estimators for k= 1,...,x:

P00 = 3 wlk)y ()

k=1

(®)

with weights w(k) also depending on x. The conventional Hill
estimates y(k) are autocorrelated for different k& due to the use
of common observations. Neither OLS nor WLS estimation
directly takes into account the resulting autocorrelation of the
error term. Consequently, the formulas for the usual standard
errors are inappropriate. In the appendix, we derive appropri-
ate standard errors for the WLS-based estimators using the
asymptotic normality of order statistics. Asymptofic properties
may not hold in small samples. However, in the next section
we will present evidence based on simulations that the resull-
ing standard errors are quite accurate.

2. SIMULATION RESULTS

In this section, we investigate the statistical properties of
the modified Hill estimator using simulations. In particular,
we apply the modified Hill estimator to obtain tail-index esti-
mates for relatively small samples. Qbservations are drawn
from Student-¢, Burr, and Cauchy distributions, respectively.
(Results from simulations for Pareto distributions are avail-
able on request from the authors. They remain unreported
because the standard Hill estimator already provides unbiased
estimates for the Pareto distribution.) A similar simulation is
done for a typical GARCH (1,1) process.

2.1 Student-t Distributions

In the first simulation study we draw 2,000 samples that
consist of n Student-r innovations each. The sample size »
equals 100, 250, 500, or 1,000 observations. The number of
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degrees of freedom ranges from 1 through 5. Note that the tail
index « is equal to the number of degrees of freedom of the
generating Student-¢ distribution. For each of the 2,000 sam-
ples we calculate the tail index using the WLS-based modi-
fied Hill estimator. (OLS results differ only marginally from
WLS results and therefore remain unreported. They are avail-
able on request.) In this experiment, « equals half the sample
size (1/2). The average over the 2,000 estimates is reported
in Table I together with the appropriate standard errors based
on the average estimate. (We have not calculated the standard
errors for each single estimate. Instead, we provide the stan-
dard error based on the average estimate over the simulations.
This can be done since the formulas for the standard errors
only depend on the estimated tail index, the number of obser-
vations, and « and not on any other sample characteristics
that may vary over the simulation. The results of a simulation
study support our use of this average estimate as an adequate
estimate of the standard error.) For comparison, the standard
deviations of the sampling distribution of the point estimates
are reported as well.

Table 1 shows that the bias of the modified Hill estimator
in small samples is small for Student-¢ distributions relative to
the true tail index. A decrease in the sample size from 1,000
to 100 hardly affects the average value of the estimated tail
index. Decreasing the sample size leads to an increase of the
average standard error, however. The bias is smallest when the
true e is low—that is, for relatively fat-tailed distributions. For
o’s exceeding 4, the bias increases, probably due to a violation
of the strong tail-fatness assumption underlying the Hill esti-
mator. The computed standard errors are close to the standard
deviation of the sampling distribution of the estimates, which
supports the appropriateness of the standard-error formulas.

2.2 Cauchy and Burr Distributions

In Tables 2 and 3, we present average tail-index estimates
for samples drawn from the Burr distribution and from a

Table 1. Estimates for Student-t Samples

True tail index Sample size n

¥ a 100 250 500 1,000
1.000 1 940 938 946 949
(:310) (.194) (.136) (.095)
307 194 140 .098
500 2 459 460 456 456
(.152) (.095) (.066) (.046)
168 106 076 051
333 3 319 321 316 318
(.105) (.066) (.045) (.032)
126 080 058 .040
250 4 260 258 258 257
(.086) (.053) (.037) (.026)
107 066 047 034
200 5 227 222 224 202
(.075) (.046) (.032) (.022)
.098 061 031 031

NOTE: This table provides estimates of the tails of Student-t samples for four sample sizes
and five numbers of degrees of freedom {these numbers equal the true value of the tail index
« of the Student-t). The numbers presented are abtained from 2,000 simulations. In each cell
we present the average y estimate over the 2,000 simulations, the standard error based on the
average eslimate in parentheses, and the cross-sectional standard deviation of the estimales
as a benchmark for the standard errar.
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Table 2. Estimates for Burr Samples
True tail index Sample size n
b a 100 250 500 1,000
WLS-based modified Hill v estimates
.250 4 .268 .265 .265 .265
(.088) (.055) (.038) (.027)
100 .062 .042 .031

NOTE: This table provides y estimates of the talls of Burr samples for four sample sizes (the
true tail index « equals 4 for the Burr distribution). The numbers presented are obtained from
2,000 simulations. In each cell we present the average y estimate over the 2,000 simulations,
the corrected standard error based on the average estimate in parentheses, and the cross-
sectional standard deviation of the estimates as a benchmark for the corrected standard error,

Cauchy distribution, respectively. For the Burr distribution, the
cdf reads F(x) =1~ (x>+1)"? and « equals 4 (y equals .25)
by definition. The tail index « equals 1 for the Cauchy dis-
tribution. The performance of the modified Hill estimator is
satisfactory for both distributions. The modified Hill estimator
slightly underestimates when the true distribution is Cauchy.
Notice that the behavior of the modified Hill estimator differs
in this case from that of the traditional Hill estimator, which
generally overestimates in finite samples when the true distri-
bution is stable (e.g., see McCulloch 1997).

2.3 Choice of ¥

To shed more light on the sensitivity of the previous results
with respect to the choice of k (equal to n/2), we present
evidence for different choices of « in Table 4. The results
presented here are the average tail-index estimates over 2,000
samples with observations drawn from a Student-¢ distribu-
tion with degrees of freedom for seven different choices of
k smaller than n/2. The resulting estimates for various « are
only marginally different. We conclude that the modified Hill
estimator is quite robust with respect to the choice of k for
the sample size used in this article. As a rule of thumb, we
choose k equal to n/2 from now on.

2.4 GARCH(1,1)

The straightforward alternative to mode!l tail fatness in
financial-return series is the use of (G)ARCH processes, in

Table 3. Estimates for Cauchy Samples

True lail index Sample size n

y a 100 250 500 1,600
WLS-based modified Hill v estimates

1 1 .895 .008 911 .008

(.295) (.187) {(.131) (.109)

.258 .190 157 185

NOTE: This table provides y estimates of the tails of Cauchy samples for four sample sizes
{the true tail index e equals 1). The numbers presented are obtained from 2,000 simuiations.
In gach cell we present the average y estimate over the 2,000 simulations, the corrected stan-
dard error based on the average estimate in parentheses, and the cross-sectional standard
deviation of the estimates as a benchmark for the corrected standard etror,
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Table 4. Estimates for Different Thresholds «
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Table 5. Estimates for GARCH(1,1) Samples

Sample size n

K 100 250 500 1,000
WLS-based modified Hill vy estimates

n/3 330 331 330 332
(.134) (.084) (.059) (.041)

n/4 344 348 343 344
(.157) (.103) (071) (.049)

344 348 345 345

n's (.143) (.103) (.078) (.059)
(z)?° 342 344 342 344
(-138) (.091) (.066) (:048)

(2)** 342 343 341 344
: (.132) (.085) (.061) (.044)
(2)y* 337 338 337 340
(.123) (.079) (.056) (.040)

(H*™ 330 331 330 332
(.115) (.073) (.051) (.036)

NOTE: This table provides tail-index +y estimates obtained from the OLS-based and WLS-
based muodified Hill estimators, Furthermore, the threshold levels x are varied as a function of
1. The presented estimates are obtained from 2,000 simulations, in which a Student-t sample
is drawn cansisting of n innovations in each simulation. The true tail index « of the underlying
Student-t distribution equals 3. In parentheses we present the cross-sectional standard errors,

which second-order dependence as reflected in clusters of
high-volatility returns and low-volatility returns, respectively,
transforms independently and identically normally disiributed
innovations into a fat-tailed distribution for the data. In empir-
ical work on financial returns, the GARCH(1,1) model is com-
monly used; see, for instance, Baillie and Bollerslev (1989)
and Drost and Nijman (1993). Consider the following standard
GARCH(1,1) model:

Yy =004,

&)

and

U,2=w+)60312—|+310}2—1v (10)
where y is the observed return and u is a standard normally
distributed innovation. Groenendijk (1999) showed that a one-
to-one mapping exists between the parameters (S, 8,) of a
GARCH(1,1) model and the tail index of the resulting dis-
tribution of returns. Since the relation is a highly nonlin-
ear confluent hypergeometric function of the second kind,
Groenendijk solved the value of the tail estimate numeri-
cally for a wide range of GARCH parameters. In Table 5,
we present evidence on the performance of the (WLS-based)
modified Hill estimator for a typical GARCH(1,1) model with
parameters (.15, .8). These parameter values are within the
range of parameter estimates that Baillie and Bollerslev (1989)
reported for weekly exchange-rate returns. This particular
choice is relevant and appropriate here because we will use
weekly exchange-rate returns ourselves in Section 3. On the
basis of the results of Groenendijk (1999), the theoretical value
of the 1ail index « for this parameter pair is 5.78 (with cor-
responding y equal to .173), For each of the sample sizes
n = 100, 250, 500, and 1,000, we perform 2,000 replications.
In the table we present the average results. Overall, the results

True tail index Sample size n

y a 100 250 500 1,000
473 578 142 160 170 180
(.083) (.063) (.057) (.046)

NOTE: This table provides y estimates of the tails of GARCH(1,1) samples tor four sample
sizes (the true tail index « equals 5.78, while the true y equals .173) using WLS. The numbers
presented are obtained from 2,000 simulations. In each cell we present the average  estimate
over the 2,000 simulations, and the cross-sectional slandard deviation of the estimates as a
proxy for the true standard error in parentheses. For each sample, « is set to the ball of the
sample size.

are supportive of the adequate performance of the modified
Hill estimator (see also Lucas 1997).

2.5 The Bias in the Conventional Hill Estimator

Finally, we compare the performance of our modified Hiil
estimator to the original Hill estimator in small samples.
For this purpose, the simulation experiment from Table 1 is
repeated for the conventional Hill estimator. This requires the
choice of the number of tail observations k to include. We fol-
low the procedure propagated by Jansen and de Vries (1991)
and Koedijk and Kool (1994), among others, to determine
the optimal k. {In this procedure, returns are assumed to be
Student-# distributed with a specific number of degrees of free-
dom (=a). Given sample size n and chosen «, a Monte Carlo
experiment is performed. The mean squared error (MSE)
between the estimate and the assumed « is calculated for dif-
ferent values of k. Then the value of & that minimizes the aver-
age MSE is chosen as the optimal number of observations to
use in the Hill estimator.] BVT (1996) formulated an alterna-
tive procedure to determine k. We did not use their approach
for two reasons. First, their method is quite sensitive to the
precise implementation. More importantly, it is subject to the
same criticism against all methods that use the conventional
Hill estimator in combination with a specific procedure to
determine the “optimal” k. Consequently, it is not fundamen-
tally different from those of Jansen and de Vries (1991) and
Koedijk and Kool (1994), Simulation results by Embrechts,
Kliippelberg, and Mikosch (1997, pp. 197 and 337) support
this view, They showed that the Hill estimator and alternatives
work well over large ranges of values for k in the case of
exact Pareto behavior, whereas it can lead to very wrong infer-
ence for other distributions. The “Hill horror plots” reported
by Embrechts et al. (1997, p. 194) actually suggest the use of
the modified Hill estimator that we propose. They show devia-
tions of the Hill estimates trending farther away from the true
value of the tail index as k is increased for other than exact
Pareto distributions. The intercept from a regression through
these Hill estimates is the modified Hill estimator and is close
to the true value. Actually, it is much closer to the true tail-
index value than the Hill estimator with & optimally chosen
[using the BVT (1996) procedure or some similar procedure]
over a large range of values for k.

From Table 6, we conclude that the conventional Hill esti-
mator yields unbiased tail-index estimates for o equal to 1. For
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larger a’s, the conventional Hill estimator is severely biased
even if the assumption about the (unknown) underlying dis-
tribution happens to be correct. For example, when the true
(and assumed) « equals 3, the average estimate of y equals
.4 for a sample size of 100; that is, the average estimate of @
equals 1/.4 or 2.5. In general, therefore, the conventional Hill
estimator overestimates the tail fatness of the underlying dis-
tribution. To reduce the bias of the conventional Hill estima-
tor, it is necessary to assume a much less fat-tailed underlying
distribution than the true distribution actually is. From a com-
parison of Tables 1 and 6, we conclude that the modified Hill
estimator systematically outperforms the conventional one in
small samples

Overall, the simulation results in this section provide sup-
porting evidence of the adequacy of the modified Hill esti-
mator in small samples with observations drawn from Burr,
Cauchy, and Student-s distributions and for returns following
a GARCH(1,1) process. Moreover, the sensitivity of the mod-
ified Hill estimator for the choice of k is low. In the next
section, we will apply the modified Hill estimator to a set of
weekly exchange-rate returns.

3. RESULTS ON EXCHANGE-RATE RETURNS

To illustrate the relevance of the modified Hill estimator
in real-world cases, we now apply both the modified and the
conventional Hill estimator to obtain tail estimates for five
major exchange rates against the U.S. dollar over the period
January 1979 to January 1990. The currencies considered are
the French franc, the German mark, the British pound, the
Swiss franc, and the Japanese yen. Using weekly returns, the
sample size n equals 620. The results are in Table 7.

In the upper part of Table 7 we present the modified Hill
vy estimates, while vy estimates using the conventional Hill
estimator are in the lower part of Table 7. (For the procedure
that we used to select the optimal &, we refer to Section 3.1.
Using n = 620, the optimal & is found to be 20 for the analysis
of one tail and 38 for the simultaneous analysis of both tails.)
Again, for each exchange rate the conventional Hill procedure
produces larger vy estimates than the modified Hill estimator.
The conventional results imply « estimates between 3 and 4
for most exchange rates, whereas they are larger than 4 mostly
if the tail index is estimated by the modified Hill estimator.

It is interesting to compare our estimates with those of
Loretan and Phillips (1994), who used daily data (n ~ 1,550)
for approximately the same sample. They applied the conven-
tional Hill estimator to obtain tail estimates. Their use of daily
data for a long period may have made the sample long enough
to overcome the small-sample bias in the conventional Hill
estimator. Nevertheless, for all exchange rates under consid-
eration, our modified y estimates suggest higher « estimates
than were found by the conventional Hill estimator used by
Loretan and Phillips (1994). That is, even the large number
of observations they used may lead to overestimation of tail
fatness using the conventional Hill estimator.

One caveat applies, though. A comparison of tail estimates
at different sample frequencies is valid only as long as the
observations are independent and the underlying distribution
varies regularly at infinity. This is the case for many fat-tailed
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Table 6. Conventional Hill Estimates
Sample size n
True « Assumed «a 100 260 500 1,000
a=1
1 1.081 1.045 1.038 1.033
(177) (.123) (.087) (.087)
o 1.021 1.006 1.006 1.008
(.225) (.185) (.138) (-104)
3 1.010 1.002 1.005 1.004
(.296) (.221) (.186) (.159)
4 1.007 .996 1.003 1.003
(.368) (-262) (222) (.173)
5 1.005 999 1.002 1.005
(.343) (-320) {.240) (.208)
a=2
1 .689 634 629 807
{.106) (.070) (.052) (.037)
5 597 553 545 540
(.124) (.093) (.075) {.053)
3 .558 532 525 517
(152) {.108) (.096) (.078)
4 538 522 519 514
(.181) (.129) (.110) (.084)
5 543 513 515 511
(.173) (.162) (.120) (.100)
a=3
1 .583 525 516 490
(.088) {.057) (.040) {.029)
2 476 427 413 404
(.094) (071) (.053) (.039)
3 427 .400 383 374
(111) {.080) (.087) (.057)
4 .400 .386 371 370
(.134) (.094) (.078) (.062)
5 407 374 .368 .361
{.126) (.112) (.084) (.074)
a=4
1 534 475 467 438
(.082) (.050) (.036) (.026)
2 425 371 .354 .345
(.085) {.059) (.044) (.032)
3 369 342 .320 308
(.097) {.070) (.055) (.045)
4 341 326 307 302
{.112) (.079) (.063) (.049)
5 .348 .309 302 294
(.105) {.091) (.068) (.058)
o=5
1 .508 447 439 410
(.075) (.048) (.033) {.024)
5 394 .338 322 310
(.078) (.053) (.039) {.030)
3 340 307 286 .270
(.088) (.059) (.048) (.040)
4 312 .288 273 264
(.100) (.067) (.055) (.044)
5 318 272 .269 254
{.096) (.078) (.059) {.051)

NOTE: This table presents conventiona! Hill ¥ estimates for simulated Student-t samples.
The sample size n equals 100, 250, 500, or 1,000. The true & equals either 1, 2, 3, 4, or 5.
The number of tail observations (k) used in the Hill estimator is determined by a Monte Carlo
simulation as described in Section 1.2, "Assumed «” refers to the degrees of freedom assumed
in the Monte Carlo samples. The numbers presented are averages over 2,000 replications,
The cross-sectional standard deviations of the estimates are presented in parentheses.

distributions. Then, time aggregation from daily to weekly
or monthly returns does not affect the levels of the « esti-
mates. However, with significant second-order dependence in
the observations—as is the case for GARCH processes—
this aggregation invariance of tail-estimate properties may be
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Table 7. Tail Estimates of Foreign Exchange Rates

France  Germany Japan  Switzerland UK.
Weekly returns—modified Hill y estimates—n =~ 620
Both tails
WLS 202 195 A73 .189 189
{.026} (.026) {.022) {.024) (.024)
Left tail
WLS .166 .168 21 137 202
(.031) (.032) (.024) (.026) (.038)
Right tail
WLS 231 .194 .166 195 201
(.042) {.035) {.035) {.035) (.037)

Weekly returns—conventional Hill v estimates—n = 620
Both tails

k=38 .242

.232 .288 196 .258
(.039) (.038) (.047) {.032) (.042)
Left tail
k=20 .204 213 277 234 274
{.048) (.048) (.062) (.052) (.061)
Right tait
k=20 327 228 .236 194 251
{.073) (.051) (.053) (043) {.058)

NOTE: This table contains the tail-index a estimates reported by Loretan and Phillips (1994).
For five exchange rates denoted against the U.S. dollar, they obtained tail-index estimates
from the conventional Hill estimator (1). They obtained their estimates for five values of & (20,
30, 50, 75, 100). For each exchange rate, we report the minimum and maximum tail index

they found with the standard error in parentheses and the level k at which these estimates
are obtained.

violated; see Kearns and Pagan (1997), for instance. Drost
and Nijman (1993} showed that the class of symmetric weak
GARCH(1,1) processes is closed under temporal aggregation.
That is, aggregation of weak GARCH(1,1) processes resulis
in a weak GARCH(1,1) process again. However, the param-
eters of the GARCH(I,1) before and after time aggregation
may differ. Consequently, the tail index may change as well,
due to the result shown by Groenendijk (1999). An in-depth
investigation of the relation between tail-index estimates for
low- and high-frequency GARCH(1,1) processes is beyond the
scope of this article and is left to future research. [In further
support of the improved estimates with the modified Hill esti-
mator in small samples, we note that Dacorogna et al. (1995),
for example, applied a bootstrap methodology in combination
with high-frequency data to obtain unbiased tail-index esti-
mates. They found o estimates close to the values reported
here for the same exchange rates. Again, a caveat with respect
to aggregation dependence of data applies.]

4. CONCLUSION

It is a stylized fact that extreme returns on financial assets
occur relatively frequently, The distribution of financial-asset
returns are fatter tailed than the normal distribution, and one
needs to incorporate information about the tails specifically to
correctly model the shape of the distribution,

According to EVT, the shape of the distribution and tail
behavior can be summarized by one characteristic parameter
a, the so-called tail index. Most methods to estimate «, of
which the conventional Hill (1975) estimator is best known
and most widely used, suffer from small-sample bias and are
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well behaved only asymptotically. Therefore, a reliable assess-
ment of the probability of an extreme event requires a large
number of observations. That is, either high-frequency data or
a long sample period is required. For relatively small samples,
results must be interpreted cautiously and overestimation of
tail fatness is likely to be a problem.

In this article we modify the conventional Hill estimator to
correct for the small-sample bias. To this end, we exploit an
important characteristic of its bias function. In particular, 1t
may be shown that the bias is an almost linear function of the
number of tail observations used in the estimation, Our estima-
tor uses a number of conventional Hill estimates, which differ
in the number of tail observations included, and calculates a
weighted average of these estimates with weights obtained by
using simple least squares techniques. We take into account
issues of heteroscedasticity and autocorrelation due to overlap-
ping data. A procedure is developed to appropriately correct
the conventional incorrect least squares standard errors. .

Subsequently, we study the adequacy of our estimator
simulation studies. Overall, we conclude that approximately
unbiased tail estimates result, even for samples as small as
100 observations for a range of distributions—Burr, Cauchy,
and the Student-r. The modified Hill estimator appears to per-
form equally well for GARCH(1,1) processes, which are often
used to model financial returns. We show that the modified
approach is rather insensitive to the choice of maximum num-
ber of tail observations to include. Finally, the computed stan-
dard errors appear to be appropriate and similar to the standard
deviations of the simulated sampling distributions. Overall, our
modification provides an important gain over the conventional
Hill estimator.

To illustrate the performance of the modified Hill estimz?—
tor for real-world data, we apply it to obtain tail-index esti-
mates for five main foreign exchange rates against the U.S.
dollar. A comparison between the conventional and modified
Hill results shows that tail fatness is estimated to be lower
with the modified approach for every single exchange rate.
We also try to explicitly compare our results with previously
published work for the same variables and (approximately)
the same period. However, these latier studies use extremely
large samples (through higher-frequency data). Caution should
be applied in this comparison because time aggregation may
cloud the picture. The high-frequency results are generally
close to our modified tail estimates for smaller (and lower-
frequency samples). Still, our estimates suggest less fat tails
than found even in high-frequency studies. The extent to which
this is due to time aggregation issues is left to future research.

Overall, our comparative work shows that tail-fatness is eas-
ily exaggerated in small samples. Implicitly, this suggests that
probabilities on extreme events may be overestimated as well
when using conventional estimators. The moditied Hill esti-
mator avoids this problem and provides reliable tail-index esti-
mates even in small samples, Our methodology can have many
useful applications in real-world situations—for instance, in
the risk-management industry, where samples can be relatively
short while the likelihood of extreme events tends to be high.
An example is the VaR-x methodology presented by Huisman
et al. (1998). VaR-x directly uses tail-index estimates from
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small samples to obtain Value at Risk estimates that incorpo-
rate the high probability of extreme negative returns on finan-
cial assets.
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APPENDIX: STANDARD ERRORS FOR THE
MODIFIED HILL ESTIMATOR

In this appendix we derive the appropriate standard errors
for the WLS estimator. The regular standard errors are not
applicable since the nature of the modified Hill estimator pre-
sented here introduces an overlapping data problem.

Let y be the ((x+1) x 1) vector of increasing order statis-
tics {y(n—«k),...,y(n)} with y(i) = In(x(i)) for i =n—
K,...,n. Since the Hill estimator (1) is a linear combination
of the y(i)’s, we can express the vector y* consisting of y(k)
(k=1,...,k) as yv* = Ay for some ((k x k) + 1) transfor-
mation matrix A. Let % be the covariance matrix of the order
statistics contained in y. Then {} = AS A’ is the covariance
matrix for the set of Hill estimates in y*. Once we know (,
we obtain the standard error of the modified Hill estimates as
follows. For the WLS-based estimator given in (7), the covari-
ance matrix of by, can be obtained from

coV(bys) = (Z'WWZ) ' ZWWAW' WZ(ZWWZ)™".
(A1)

To compute the covariance matrix in (A.1), the covariance
matrix ) must be specified or, alternatively, A and 3 must be
given. The (k x (x+ 1)) matrix A can be easily derived from
the conventional Hill estimator (1) for the different values of
k:

0 ... 0 0 0 -1 1
0 ... 0 0 -1 1/21/2
A=|0 0 —1 1/3 1/3 1/3 (A2)

—-.1 1/K‘... I)K I)K I)K I)K I)K

To obtain 3 we use the fact that increasing order statistics
z() (i=1,...,k+ 1) from a sample of size n are asymp-
totically multivariate normally distributed (e.g., see Cox and
Hinkley 1974) with mean p(¢) and with covariances between
order statistics z(¢) and z(j) equal to v(i, j), where

wli) = F7 (p(i) (A3)

and

oy = POO=PG)

= A4
nf(wNf(nG)) .
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Here, p(i) is approximated by i/n, F,(z) denotes the cdf
of z, and f.(z) denotes the probability density function of z.
Since any fat-tailed distribution is (approximately) Pareto dis-
tributed far in its tails, we propose to use a Pareto distribution
in Equations (A.3) and (A.4) for our application. That is, we
assume that the x({)’s on which the modified Hill estimator
is ultimately based are drawn from a Pareto distribution for
i=n—k,...,n Inthat case, the cdf of x is given by F(x) =
1 —x"% for x > 0. Using the fact that the Hill estimator is a
linear combination of the natural logarithms of the order statis-
tics based on x, the following expression for the approximate
mean (i) of order statistic y(i) (i=1,...,k+1) can be
found:

p(8) =n((1=p@E)~""). (A.5)

Since we have an expression for (i) and by setting
p(i) in (A4) equal to i/n and approximate a by the
inverse of the estimated 7y, the covariance matrix 3 of
the order statistics y with elements wv(i, j) is fully defined.
Since we have %, () is obtained from AZA'. Substitution
in (A.3) and (A.4) leads to appropriate WLS covariance
matrices.

[Received September 1997. Revised December 1999.]
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