8,969 research outputs found

    Wormhole Effect in a Strong Topological Insulator

    Full text link
    An infinitely thin solenoid carrying magnetic flux Phi (a `Dirac string') inserted into an ordinary band insulator has no significant effect on the spectrum of electrons. In a strong topological insulator, remarkably, such a solenoid carries protected gapless one-dimensional fermionic modes when Phi=hc/2e. These modes are spin-filtered and represent a distinct bulk manifestation of the topologically non-trivial insulator. We establish this `wormhole' effect by both general qualitative considerations and by numerical calculations within a minimal lattice model. We also discuss the possibility of experimental observation of a closely related effect in artificially engineered nanostructures.Comment: 4 pages, 3 figures. For related work and info visit http://www.physics.ubc.ca/~fran

    Topological Anderson Insulator in Three Dimensions

    Get PDF
    Disorder, ubiquitously present in solids, is normally detrimental to the stability of ordered states of matter. In this letter we demonstrate that not only is the physics of a strong topological insulator robust to disorder but, remarkably, under certain conditions disorder can become fundamentally responsible for its existence. We show that disorder, when sufficiently strong, can transform an ordinary metal with strong spin-orbit coupling into a strong topological `Anderson' insulator, a new topological phase of quantum matter in three dimensions.Comment: 5 pages, 2 figures. For related work and info visit http://www.physics.ubc.ca/~franz

    Temperature evolution and bifurcations of metastable states in mean-field spin glasses, with connections with structural glasses

    Full text link
    The correlations of the free-energy landscape of mean-field spin glasses at different temperatures are investigated, concentrating on models with a first order freezing transition. Using a ``potential function'' we follow the metastable states of the model in temperature, and discuss the possibility of level crossing (which we do not find) and multifurcation (which we find). The dynamics at a given temperature starting from an equilibrium configuration at a different temperature is also discussed. In presence of multifurcation, we find that the equilibrium is never achieved, leading to aging behaviour at slower energy levels than usual aging. The relevance of the observed mechanisms for real structural glasses is discussed, and some numerical simulations of a soft sphere model of glass are presented.Comment: 16 pages, LaTeX, 10 figures (12 postscript files

    Glassy Mean-Field Dynamics of the Backgammon model

    Full text link
    In this paper we present an exact study of the relaxation dynamics of the backgammon model. This is a model of a gas of particles in a discrete space which presents glassy phenomena as a result of {\it entropy barriers} in configuration space. The model is simple enough to allow for a complete analytical treatment of the dynamics in infinite dimensions. We first derive a closed equation describing the evolution of the occupation number probabilities, then we generalize the analysis to the study the autocorrelation function. We also consider possible variants of the model which allow to study the effect of energy barriers.Comment: 21 pages, revtex, 4 uuencoded figure

    On the origin of ultrametricity

    Full text link
    In this paper we show that in systems where the probability distribution of the the overlap is non trivial in the infinity volume limit, the property of ultrametricity can be proved in general starting from two very simple and natural assumptions: each replica is equivalent to the others (replica equivalence or stochastic stability) and all the mutual information about a pair of equilibrium configurations is encoded in their mutual distance or overlap (separability or overlap equivalence).Comment: 13 pages, 1 figur

    TDC Chip and Readout Driver Developments for COMPASS and LHC-Experiments

    Get PDF
    A new TDC-chip is under development for the COMPASS experiment at CERN. The ASIC, which exploits the 0.6 micrometer CMOS sea-of-gate technology, will allow high resolution time measurements with digitization of 75 ps, and an unprecedented degree of flexibility accompanied by high rate capability and low power consumption. Preliminary specifications of this new TDC chip are presented. Furthermore a FPGA based readout-driver and buffer-module as an interface between the front-end of the COMPASS detector systems and an optical S-LINK is in development. The same module serves also as remote fan-out for the COMPASS trigger distribution and time synchronization system. This readout-driver monitors the trigger and data flow to and from front-ends. In addition, a specific data buffer structure and sophisticated data flow control is used to pursue local pre-event building. At start-up the module controls all necessary front-end initializations.Comment: 5 pages, 4 figure

    From Isovists via Mental Representations to Behaviour: First Steps Toward Closing the Causal Chain

    Get PDF
    This study addresses the interrelations between human wayfinding performance, the mental representation of routes, and the geometrical layout of path intersections. The virtual reality based empirical experiment consisted of a route learning and reproduction task and two choice reaction tasks measuring the acquired knowledge of route decision points. In order to relate the recorded behavioural data to the geometry of the environment, a specific adaptation of isovist-based spatial analysis was developed that accounts for directional bias in human spatial perception and representation. Taken together, the applied analyses provided conclusive evidence for correspondences between geometrical properties of environments as captured by isovists and their mental representation

    Stability of Majorana Fermions in Proximity-Coupled Topological Insulator Nanowires

    Full text link
    It has been shown previously that a finite-length topological insulator nanowire, proximity-coupled to an ordinary bulk s-wave superconductor and subject to a longitudinal applied magnetic field, realizes a one-dimensional topological superconductor with an unpaired Majorana fermion (MF) localized at each end of the nanowire. Here, we study the stability of these MFs with respect to various perturbations that are likely to occur in a physical realization of the proposed device. We show that the unpaired Majorana fermions persist in this system for any value of the chemical potential inside the bulk band gap of order 300 meV in Bi2_2Se3_3 by computing the Majorana number. From this calculation, we also show that the unpaired Majorana fermions persist when the magnetic flux through the nanowire cross-section deviates significantly from half flux quantum. Lastly, we demonstrate that the unpaired Majorana fermions persist in strongly disordered wires with fluctuations in the on-site potential ranging in magnitude up to several times the size of the bulk band gap. These results suggest this solid-state system should exhibit unpaired Majorana fermions under accessible conditions likely important for experimental study or future applications.Comment: 17 pages, 13 figure
    corecore