3 research outputs found

    Remodeling of the Lymph Node High Endothelial Venules Reflects Tumor Invasiveness in Breast Cancer and is Associated with Dysregulation of Perivascular Stromal Cells

    No full text
    The tumor-draining lymph nodes (TDLNs) are primary sites for induction of tumor immunity. They are also common sites of metastasis, suggesting that tumor-induced mechanisms can subvert anti-tumor immune responses and promote metastatic seeding. The high endothelial venules (HEVs) together with CCL21-expressing fibroblastic reticular cells (FRCs) are essential for lymphocyte recruitment into the LNs. We established multicolor antibody panels for evaluation of HEVs and FRCs in TDLNs from breast cancer (BC) patients. Our data show that patients with invasive BC display extensive structural and molecular remodeling of the HEVs, including vessel dilation, thinning of the endothelium and discontinuous expression of the HEV-marker PNAd. Remodeling of the HEVs was associated with dysregulation of CCL21 in perivascular FRCs and with accumulation of CCL21-saturated lymphocytes, which we link to loss of CCL21-binding heparan sulfate in FRCs. These changes were rare or absent in LNs from patients with non-invasive BC and cancer-free organ donors and were observed independent of nodal metastasis. Thus, pre-metastatic dysregulation of core stromal and vascular functions within TDLNs reflect the primary tumor invasiveness in BC. This adds to the understanding of cancer-induced perturbation of the immune response and opens for prospects of vascular and stromal changes in TDLNs as potential biomarkers. Simple Summary Tumor draining lymph nodes (TDLNs) are the most common metastatic sites in human cancer but are also essential sites for induction of tumor immunity. How different types of primary tumors affect the anti-tumor immune response in the LNs is not fully understood. By analyzing biobank tissue from breast cancer patients, we demonstrate that invasive breast cancer induce dramatic pre-metastatic LN changes affecting the structure and function of the specialized LN vasculature and associated stromal cells, required for recruitment of T-lymphocytes into the LNs. These changes could not be seen in patients with non-invasive breast cancer and provide new insights of how invasive tumors can disrupt essential functions within the immune system. The data also shows promise of LN stromal and vascular changes as possible future biomarkers for prediction of disease progression in human cancer

    Automated detection of vascular remodeling in human tumor draining lymph nodes by the deep learning tool HEV-finder

    No full text
    Vascular remodeling is common in human cancer and has potential as future biomarkers for prediction of disease progression and tumor immunity status. It can also affect metastatic sites, including the tumor-draining lymph nodes (TDLNs). Dilation of the high endothelial venules (HEVs) within TDLNs has been observed in several types of cancer. We recently demonstrated that it is a premetastatic effect that can be linked to tumor invasiveness in breast cancer. Manual visual assessment of changes in vascular morphology is a tedious and difficult task, limiting high-throughput analysis. Here we present a fully automated approach for detection and classification of HEV dilation. By using 12,524 manually classified HEVs, we trained a deep-learning model and created a graphical user interface for visualization of the results. The tool, named the HEV-finder, selectively analyses HEV dilation in specific regions of the lymph nodes. We evaluated the HEV-finder's ability to detect and classify HEV dilation in different types of breast cancer compared to manual annotations. Our results constitute a successful example of large-scale, fully automated, and user-independent, image-based quantitative assessment of vascular remodeling in human pathology and lay the ground for future exploration of HEV dilation in TDLNs as a biomarker

    A topical rectal douche product containing Q-Griffithsin does not disrupt the epithelial border or alter CD4+ cell distribution in the human rectal mucosa

    No full text
    Abstract To reduce HIV transmission, locally applied pre-exposure prophylaxis (PrEP) products for anorectal use will be important complements to oral and injectable PrEP products already available. It is critical to preserve an intact rectal epithelium and avoid an influx of mucosal HIV target cells with such product use. In this phase 1 clinical trial, we evaluated application of a topical rectal douche product containing Q-Griffithsin (Q-GRFT). Colorectal tissue samples were obtained via sigmoidoscopy at baseline, 1 and 24 h after single-dose exposure in 15 healthy volunteers. In situ staining for epithelial junction markers and CD4+ cells were assessed as an exploratory endpoint. A high-throughput, digitalized in situ imaging analysis workflow was developed to visualize and quantify these HIV susceptibility markers. We observed no significant differences in epithelial distribution of E-cadherin, desmocollin-2, occludin, claudin-1, or zonula occludens-1 when comparing the three timepoints or Q-GRFT versus placebo. There were also no differences in %CD4+ cells within the epithelium or lamina propria in any of these comparisons. In conclusion, the rectal epithelium and CD4+ cell distribution remained unchanged following topical application of Q-GRFT. In situ visualization of HIV susceptibility markers at mucosal sites could be useful to complement standard product safety assessments
    corecore