99 research outputs found

    Using High-Performance Liquid Chromatography with Fluorescence to Determine the Effectiveness of Wastewater Treatment Plants in the Removal of Natural and Synthetic Estrogens

    Get PDF
    The presence of hormones in the environment is becoming an increasingly popular topic in environmental and analytical chemistry. This research aims to develop a method to quantify the amount of two types of hormones in wastewater treatment plant effluents. The two hormones analyzed are 17β-estradiol (E2), a naturally produced hormone, and 17α-ethinylestradiol (EE2), a synthetic hormone commonly found in oral contraceptives. It has been hypothesized that synthetic hormones are significantly harder for wastewater treatment plants to remove, and the final goal of this research is to be able to test samples to determine the effectiveness of the wastewater treatment plants. The research thus far has focused on method development using high-performance liquid chromatography with fluorescence and standard E2 and EE2 solutions. This report shows the work completed when trouble-shooting the fluorimeter and developing the method

    Using HPLC and SPE to Determine the Effectiveness of Wastewater Treatment Plants in the Removal of Caffeine and its Metabolites

    Get PDF
    There is no natural source for caffeine even though a small amount is found in groundwater. This research is designed to determine the percentage of caffeine in groundwater and try to decide which wastewater treatment process, if any, is most effective at eliminating the caffeine. In order to determine this, a method that can measure caffeine at low levels was developed. UV-visible spectrophotometry (UV-vis) was used to find the lambda max of each sample at a 10-7 g/mL dilution in order to develop a High Performance Liquid Chromatography (HPLC) method. The caffeine standards were then run using HPLC with UV-vis detection. This produced a calibration curve in which peak area was plotted against concentration. Samples will be obtained from wastewater treatment plants, run using this method and then evaluated by comparing to the standards. A solid phase extraction method will be developed and used to further purify the samples

    A Call to Standardize Teratoma Assays Used to Define Human Pluripotent Cell Lines

    Get PDF
    SummaryThe teratoma assay is the gold standard for documenting pluripotency of human stem cells. However, reports of new human ESC and iPSC lines vary widely in both methods and analysis of teratoma data. We call for consensus standards to be established to make this assay worthy of its “golden” status

    A test for common genetic and environmental vulnerability to depression and diabetes

    Get PDF
    Molecular genetic research has provided some evidence for the association between depression and metabolic disorders. We sought to determine if molecular findings are reflected in twin analyses testing if common genetic and environmental risk factors contribute to the co-occurrence of diabetes and depression. Data to derive depression and diabetes were collected from 1,237 male-male twins who participated in the 2005 Vietnam Era Twin Study of Aging (VETSA). The 1,237 twins were comprised of 347 MZ pairs, 3 MZ singletons, 267 DZ pairs and 6 unpaired twins. Depression was defined as a score below 46 on the Short Form-36 mental component summary score. Diabetes was defined by self report, use of anti-diabetic medications and insulin. Twin models were fit to estimate the correlation of genetic and environmental contributions to depression and diabetes. Consistent with other studies these data support the association between depression and diabetes (OR = 1.7; 95%CI: 1.1–2.7). Genetic vulnerability accounted for 50% (95%CI: 32%–65%) of the variance in risk for depression and 69% (95%CI: 52%–81%) of the variance in risk for diabetes. The genetic correlation between depression and diabetes was r = 0.19 (95%CI: 0–0.46) and the non-shared environmental correlation was r = 0.09 (95% CI: 0–0.45). Overall there is little evidence that common genetic and environmental factors account for the co-occurrence of depression and diabetes in middle aged men. Further research in female twins and larger cohorts is warranted

    Genome wide profiling of human embryonic stem cells (hESCs), their derivatives and embryonal carcinoma cells to develop base profiles of U.S. Federal government approved hESC lines

    Get PDF
    BACKGROUND: In order to compare the gene expression profiles of human embryonic stem cell (hESC) lines and their differentiated progeny and to monitor feeder contaminations, we have examined gene expression in seven hESC lines and human fibroblast feeder cells using Illumina(® )bead arrays that contain probes for 24,131 transcript probes. RESULTS: A total of 48 different samples (including duplicates) grown in multiple laboratories under different conditions were analyzed and pairwise comparisons were performed in all groups. Hierarchical clustering showed that blinded duplicates were correctly identified as the closest related samples. hESC lines clustered together irrespective of the laboratory in which they were maintained. hESCs could be readily distinguished from embryoid bodies (EB) differentiated from them and the karyotypically abnormal hESC line BG01V. The embryonal carcinoma (EC) line NTera2 is a useful model for evaluating characteristics of hESCs. Expression of subsets of individual genes was validated by comparing with published databases, MPSS (Massively Parallel Signature Sequencing) libraries, and parallel analysis by microarray and RT-PCR. CONCLUSION: we show that Illumina's bead array platform is a reliable, reproducible and robust method for developing base global profiles of cells and identifying similarities and differences in large number of samples

    iPSCORE: A Resource of 222 iPSC Lines Enabling Functional Characterization of Genetic Variation across a Variety of Cell Types.

    Get PDF
    Large-scale collections of induced pluripotent stem cells (iPSCs) could serve as powerful model systems for examining how genetic variation affects biology and disease. Here we describe the iPSCORE resource: a collection of systematically derived and characterized iPSC lines from 222 ethnically diverse individuals that allows for both familial and association-based genetic studies. iPSCORE lines are pluripotent with high genomic integrity (no or low numbers of somatic copy-number variants) as determined using high-throughput RNA-sequencing and genotyping arrays, respectively. Using iPSCs from a family of individuals, we show that iPSC-derived cardiomyocytes demonstrate gene expression patterns that cluster by genetic background, and can be used to examine variants associated with physiological and disease phenotypes. The iPSCORE collection contains representative individuals for risk and non-risk alleles for 95% of SNPs associated with human phenotypes through genome-wide association studies. Our study demonstrates the utility of iPSCORE for examining how genetic variants influence molecular and physiological traits in iPSCs and derived cell lines

    Neural stem cells genetically-modified to express neprilysin reduce pathology in Alzheimer transgenic models

    Full text link
    INTRODUCTION: Short-term neural stem cell (NSC) transplantation improves cognition in Alzheimer’s disease (AD) transgenic mice by enhancing endogenous synaptic connectivity. However, this approach has no effect on the underlying beta-amyloid (Aβ) and neurofibrillary tangle pathology. Long term efficacy of cell based approaches may therefore require combinatorial approaches. METHODS: To begin to examine this question we genetically-modified NSCs to stably express and secrete the Aβ-degrading enzyme, neprilysin (sNEP). Next, we studied the effects of sNEP expression in vitro by quantifying Aβ-degrading activity, NSC multipotency markers, and Aβ-induced toxicity. To determine whether sNEP-expressing NSCs can also modulate AD-pathogenesis in vivo, control-modified and sNEP-NSCs were transplanted unilaterally into the hippocampus of two independent and well characterized transgenic models of AD: 3xTg-AD and Thy1-APP mice. After three months, stem cell engraftment, neprilysin expression, and AD pathology were examined. RESULTS: Our findings reveal that stem cell-mediated delivery of NEP provides marked and significant reductions in Aβ pathology and increases synaptic density in both 3xTg-AD and Thy1-APP transgenic mice. Remarkably, Aβ plaque loads are reduced not only in the hippocampus and subiculum adjacent to engrafted NSCs, but also within the amygdala and medial septum, areas that receive afferent projections from the engrafted region. CONCLUSIONS: Taken together, our data suggest that genetically-modified NSCs could provide a powerful combinatorial approach to not only enhance synaptic plasticity but to also target and modify underlying Alzheimer’s disease pathology

    A function-based typology for Earth’s ecosystems

    Get PDF
    As the United Nations develops a post-2020 global biodiversity framework for the Convention on Biological Diversity, attention is focusing on how new goals and targets for ecosystem conservation might serve its vision of ‘living in harmony with nature’(1,2). Advancing dual imperatives to conserve biodiversity and sustain ecosystem services requires reliable and resilient generalizations and predictions about ecosystem responses to environmental change and management(3). Ecosystems vary in their biota(4), service provision(5) and relative exposure to risks(6), yet there is no globally consistent classification of ecosystems that reflects functional responses to change and management. This hampers progress on developing conservation targets and sustainability goals. Here we present the International Union for Conservation of Nature (IUCN) Global Ecosystem Typology, a conceptually robust, scalable, spatially explicit approach for generalizations and predictions about functions, biota, risks and management remedies across the entire biosphere. The outcome of a major cross-disciplinary collaboration, this novel framework places all of Earth’s ecosystems into a unifying theoretical context to guide the transformation of ecosystem policy and management from global to local scales. This new information infrastructure will support knowledge transfer for ecosystem-specific management and restoration, globally standardized ecosystem risk assessments, natural capital accounting and progress on the post-2020 global biodiversity framework

    The Changing Landscape for Stroke\ua0Prevention in AF: Findings From the GLORIA-AF Registry Phase 2

    Get PDF
    Background GLORIA-AF (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients with Atrial Fibrillation) is a prospective, global registry program describing antithrombotic treatment patterns in patients with newly diagnosed nonvalvular atrial fibrillation at risk of stroke. Phase 2 began when dabigatran, the first non\u2013vitamin K antagonist oral anticoagulant (NOAC), became available. Objectives This study sought to describe phase 2 baseline data and compare these with the pre-NOAC era collected during phase 1. Methods During phase 2, 15,641 consenting patients were enrolled (November 2011 to December 2014); 15,092 were eligible. This pre-specified cross-sectional analysis describes eligible patients\u2019 baseline characteristics. Atrial fibrillation disease characteristics, medical outcomes, and concomitant diseases and medications were collected. Data were analyzed using descriptive statistics. Results Of the total patients, 45.5% were female; median age was 71 (interquartile range: 64, 78) years. Patients were from Europe (47.1%), North America (22.5%), Asia (20.3%), Latin America (6.0%), and the Middle East/Africa (4.0%). Most had high stroke risk (CHA2DS2-VASc [Congestive heart failure, Hypertension, Age  6575 years, Diabetes mellitus, previous Stroke, Vascular disease, Age 65 to 74 years, Sex category] score  652; 86.1%); 13.9% had moderate risk (CHA2DS2-VASc = 1). Overall, 79.9% received oral anticoagulants, of whom 47.6% received NOAC and 32.3% vitamin K antagonists (VKA); 12.1% received antiplatelet agents; 7.8% received no antithrombotic treatment. For comparison, the proportion of phase 1 patients (of N = 1,063 all eligible) prescribed VKA was 32.8%, acetylsalicylic acid 41.7%, and no therapy 20.2%. In Europe in phase 2, treatment with NOAC was more common than VKA (52.3% and 37.8%, respectively); 6.0% of patients received antiplatelet treatment; and 3.8% received no antithrombotic treatment. In North America, 52.1%, 26.2%, and 14.0% of patients received NOAC, VKA, and antiplatelet drugs, respectively; 7.5% received no antithrombotic treatment. NOAC use was less common in Asia (27.7%), where 27.5% of patients received VKA, 25.0% antiplatelet drugs, and 19.8% no antithrombotic treatment. Conclusions The baseline data from GLORIA-AF phase 2 demonstrate that in newly diagnosed nonvalvular atrial fibrillation patients, NOAC have been highly adopted into practice, becoming more frequently prescribed than VKA in Europe and North America. Worldwide, however, a large proportion of patients remain undertreated, particularly in Asia and North America. (Global Registry on Long-Term Oral Antithrombotic Treatment in Patients With Atrial Fibrillation [GLORIA-AF]; NCT01468701
    corecore