13,966 research outputs found

    Spin glass models with Kac interactions

    Full text link
    In this paper I will review my work on disordered systems -spin glass model with two body and p>2p>2 body interactions- with long but finite interaction range RR. I will describe the relation of these model with Mean Field Theory in the Kac limit and some attempts to go beyond mean field.Comment: Proceedings of the Stat-phys23 conferenc

    Impurity scattering and localization in dd-wave superconductors

    Full text link
    Strong evidence is presented for the localization of low energy quasiparticle states in disordered dd-wave superconductors. Within the framework of the Bogoliubov-de Gennes (BdG) theory applied to the extended Hubbard model with a finite concentration of non-magnetic impurities, we carry out a fully self-consistent numerical diagonalization of the BdG equations on finite clusters containing up to 50×5050\times 50 sites. Localized states are identified by probing their sensitivity to the boundary conditions and by analyzing the finite size dependence of inverse participation ratios.Comment: 4 pages REVTeX with 2 embedded .ps figures; submitted to PRB as Rapid Communicatio

    Quantization and 2Ï€2\pi Periodicity of the Axion Action in Topological Insulators

    Full text link
    The Lagrangian describing the bulk electromagnetic response of a three-dimensional strong topological insulator contains a topological `axion' term of the form '\theta E dot B'. It is often stated (without proof) that the corresponding action is quantized on periodic space-time and therefore invariant under '\theta -> \theta +2\pi'. Here we provide a simple, physically motivated proof of the axion action quantization on the periodic space-time, assuming only that the vector potential is consistent with single-valuedness of the electron wavefunctions in the underlying insulator.Comment: 4 pages, 1 figure, version2 (section on axion action quantization of non-periodic systems added

    First steps of a nucleation theory in disordered systems

    Full text link
    We devise a field theoretical formalism for a microscopic theory of nucleation processes and phase coexistence in finite dimensional glassy systems. We study disordered pp-spin models with large but finite range of interaction. We work in the framework of glassy effective potential theory which in mean-field is a non-convex, two minima function of the overlap. We will associate metastability and phase coexistence with the existence of space inhomogeneous solution of suitable field equations and we will study the simplest of such solutions.Comment: 31 pages, 4 figures. Content revised, typos correcte

    A simple stochastic model for the dynamics of condensation

    Full text link
    We consider the dynamics of a model introduced recently by Bialas, Burda and Johnston. At equilibrium the model exhibits a transition between a fluid and a condensed phase. For long evolution times the dynamics of condensation possesses a scaling regime that we study by analytical and numerical means. We determine the scaling form of the occupation number probabilities. The behaviour of the two-time correlations of the energy demonstrates that aging takes place in the condensed phase, while it does not in the fluid phase.Comment: 8 pages, plain tex, 2 figure

    On chaos in mean field spin glasses

    Full text link
    We study the correlations between two equilibrium states of SK spin glasses at different temperatures or magnetic fields. The question, presiously investigated by Kondor and Kondor and V\'egs\"o, is approached here constraining two copies of the same system at different external parameters to have a fixed overlap. We find that imposing an overlap different from the minimal one implies an extensive cost in free energy. This confirms by a different method the Kondor's finding that equilibrium states corresponding to different values of the external parameters are completely uncorrelated. We also consider the Generalized Random Energy Model of Derrida as an example of system with strong correlations among states at different temperatures.Comment: 19 pages, Late

    Penumbral thermal structure below the visible surface

    Full text link
    ContextContext. The thermal structure of the penumbra below its visible surface (i.e., τ5≥1\tau_5 \ge 1) has important implications for our present understanding of sunspots and their penumbrae: their brightness and energy transport, mode conversion of magneto-acoustic waves, sunspot seismology, and so forth. AimsAims. We aim at determining the thermal stratification in the layers immediately beneath the visible surface of the penumbra: τ5∈[1,3]\tau_5 \in [1,3] (≈70−80\approx 70-80 km below the visible continuum-forming layer). MethodsMethods. We analyzed spectropolarimetric data (i.e., Stokes profiles) in three Fe \textsc{i} lines located at 1565 nm observed with the GRIS instrument attached to the 1.5-meter solar telescope GREGOR. The data are corrected for the smearing effects of wide-angle scattered light and then subjected to an inversion code for the radiative transfer equation in order to retrieve, among others, the temperature as a function of optical depth T(τ5)T(\tau_5). ResultsResults. We find that the temperature gradient below the visible surface of the penumbra is smaller than in the quiet Sun. This implies that in the region τ5≥1\tau_5 \ge 1 the penumbral temperature diverges from that of the quiet Sun. The same result is obtained when focusing only on the thermal structure below the surface of bright penumbral filaments. We interpret these results as evidence of a thick penumbra, whereby the magnetopause is not located near its visible surface. In addition, we find that the temperature gradient in bright penumbral filaments is lower than in granules. This can be explained in terms of the limited expansion of a hot upflow inside a penumbral filament relative to a granular upflow, as magnetic pressure and tension forces from the surrounding penumbral magnetic field hinder an expansion like this.Comment: 5 pages; 2 figures; accepted for publication in Astronomy and Astrophysics Letter

    Nonequilibrium dynamics of a simple stochastic model

    Full text link
    We investigate the low-temperature dynamics of a simple stochastic model, introduced recently in the context of the physics of glasses. The slowest characteristic time at equilibrium diverges exponentially at low temperature. On smaller time scales, the nonequilibrium dynamics of the system exhibits an aging regime. We present an analytical study of the scaling behaviour of the mean energy, of its local correlation and response functions, and of the associated fluctuation-dissipation ratio throughout the regime of low temperature and long times. This analysis includes the aging regime, the convergence to equilibrium, and the crossover behaviour between them.Comment: 36 pages, plain tex, 7 figures, to be published by Journal of Physics
    • …
    corecore