The Lagrangian describing the bulk electromagnetic response of a
three-dimensional strong topological insulator contains a topological `axion'
term of the form '\theta E dot B'. It is often stated (without proof) that the
corresponding action is quantized on periodic space-time and therefore
invariant under '\theta -> \theta +2\pi'. Here we provide a simple, physically
motivated proof of the axion action quantization on the periodic space-time,
assuming only that the vector potential is consistent with single-valuedness of
the electron wavefunctions in the underlying insulator.Comment: 4 pages, 1 figure, version2 (section on axion action quantization of
non-periodic systems added