34 research outputs found

    Introducing an Approach to Effective Mass of Activated Complex

    Get PDF
    This chapter provides the information about the concept of effective mass and effective velocity of the activated complex and its connection to the transition state theory. Therefore, these parameters are of essential importance for the field of homogenous as well as heterogeneous kinetics. They also prove to be useful for the calculation of many other properties of activated state, such as momentum, energetic density, mass flux, etc., as will be demonstrated on the example of thermal decomposition of calcite and aragonite. Since the activation energy and the momentum of activated state enable to complete the characterization of motion of this instanton (pseudoparticle) alongside the reaction coordinate, these parameters can be then considered as two quantum numbers of activated complex. The quantum numbers of activated state, that is, the activation energy and momentum, also explain the relation of activated complex to Planck energy, length and time, as well as to the Gravitational constant. This idea was also applied to derive the wave function of activated complex pseudoparticle, which is affected by the isotopic composition of the sample and polymorphism as well. Furthermore, the findings introduced in this chapter enable to derive and propose the modified Kissinger equation and experimental solution for the approximation parameter in the Doyle equation of temperature integral

    Introduction to the Transition State Theory

    Get PDF
    The transition state theory (TST), which is also known as theory of absolute reaction rates (ART) and the theory of activated state (complex), is essentially a refined version of crude collision theory, which treats the reacting molecules as the rigid spheres without any internal degree of freedom. The theory explains the rate of chemical reaction assuming a special type of chemical equilibrium (quasi-equilibrium) between the reactants and activated state (transition state complex). This special molecule decomposes to form the products of reaction. The rate of this reaction is then equal to the rate of decomposition of activated complex. This chapter also explains the limitation of TST theory and deals with the kinetics isotope effect

    A Brief Introduction to the History of Chemical Kinetics

    Get PDF
    This chapter begins with a general overview of the content of this work, which explains the structure and mutual relation between discussed topics. The following text provides brief historical background to chemical kinetics, lays the foundation of transition state theory (TST), and reaction thermodynamics from the early Wilhelmy quantitative study of acid-catalyzed conversion of sucrose, through the deduction of mathematical models to explain the rates of chemical reactions, to the transition state theory (absolute rate theory) developed by Eyring, Evans, and Polanyi. The concept of chemical kinetics and equilibrium is then introduced and described in the historical context

    Introduction of novel kinetic approach to calculation of activation energy and its application to the sinter-crystallization of strontian feldspar

    Get PDF
    The kinetics, the mechanism and the thermodynamics of activated state of formation of primary strontian feldspar via sinter-crystallization of non-equilibrium melt during the thermal treatment of ceramic body was investigated in this work via differential thermal analysis using isoconversional Kissinger kinetic equation. The process of formation of non-equilibrium melt and subsequent crystallization of primary strontian feldspar requires the activation energy of 631±3 and 664±2 kJ mol1, respectively. The investigation of mechanism of formation of primary strontian feldspar reveals that the process is driven by the surface nucleation and diffusion controlled growth of the new phase. The nucleation rate decreases with the time of process and non-equilibrium melt can be formed only in metastable equilibrium with activated state of strontian feldspar. Deep consideration of kinetic data leads to the deduction of new kinetic approach that enables single calculation of activation energy and frequency factor of heterogeneous processes as well as the dependence of thermodynamic parameters of activated state on temperature. Further consideration of kinetic data reveals that the activation energy is directly proportional to the function of csch (z)+1. For z=e, this term enables to derive the value for the parameter B(x) in empirical equation for Arrhenius temperature integral p(x) proposed by Doyle to be 1.0642

    The Characterization of Fixation of Ba, Pb, and Cu in Alkali-Activated Fly Ash/Blast Furnace Slag Matrix

    Get PDF
    The fixation of heavy metals (Ba, Cu, Pb) in an alkali-activated matrix was investigated. The matrix consisted of fly ash and blast furnace slag (BFS). The mixture of NaOH and Na-silicate was used as alkaline activator. Three analytical techniques were used to describe the fixation of heavy metals—X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), and X-ray powder diffraction (XRD). All heavy metals formed insoluble salts after alkaline activation. Ba was fixed as BaSO4, and only this product was crystalline. EDS mapping showed that Ba was cumulated in some regions and formed clusters. Pb was present in the form of Pb(OH)2 and was dispersed throughout the matrix on the edges of BFS grains. Cu was fixed as Cu(OH)2 and also was cumulated in some regions and formed clusters. Cu was present in two different chemical states; apart from Cu(OH)2, a Cu–O bond was also identified

    Crushed bricks as aggregate in cement based binder

    Get PDF
    The work deals with the impact of crushed brick on properties of Portland cement binder. The source of brick recycled materials is not only the demolition waste, but also the waste from brick production. One way to reduce the amount of this recyclate is to use it in cement-based composite. The advantages of using bricks as aggregate are their lower bulk density compared to conventional aggregates. Economic and ecological benefits are also important, because less natural sources need to be mined. First, the phase composition of used brick aggregate, its particle size and morphology were analysed. Test specimens with different content of brick recyclate were prepared and tested for the mechanical properties. Subsequently, the microstructure of prepared samples was examined using a scanning electron microscope. The phase composition of samples was analysed by X-ray diffraction analysis

    The formation of feldspar strontian (SrAl2Si2O8) via ceramic route: Reaction mechanism, kinetics and thermodynamics of the process

    Get PDF
    The reaction mechanism, the equilibrium composition, the temperature range of stability of formed intermediates as well as the kinetics and thermodynamics of activated state during the formation of monoclinic strontium-aluminum-silicate feldspar stroncian (SrAl2Si2O8) via the ceramic route from the mixture of SrCO3, Al2O3 and SiO2 is described in this work. Strontian does not appear up to the temperature of 1150 degrees C and is the only stable phase at the temperature >= 1600 degrees C. Three independent reactions lead to two parallel reaction pathways, i.e. the formation of strontian from single or binary oxides (1) and with Sr-gehlenite as the intermediate (2). Since the reaction rate constants ratio is higher than one (k(1)/k(2) > 1), the first reaction route is favored according to the Wegscheider principle. The kinetics of chemical reaction of 1.5 order corresponding to the kinetic function F-2/3 ((1 - alpha)(-1/2) - 1) was determined as the rate determining the mechanism of formation of strontian. The integral and differential methods show that the process requires average apparent activation energy of 229.3 kJ mol(-1). The determined average value of frequency factor is 2.1 x 10(5) S-
    corecore