9 research outputs found

    Semi-automated non-target processing in GC × GC–MS metabolomics analysis: applicability for biomedical studies

    Get PDF
    Due to the complexity of typical metabolomics samples and the many steps required to obtain quantitative data in GC × GC–MS consisting of deconvolution, peak picking, peak merging, and integration, the unbiased non-target quantification of GC × GC–MS data still poses a major challenge in metabolomics analysis. The feasibility of using commercially available software for non-target processing of GC × GC–MS data was assessed. For this purpose a set of mouse liver samples (24 study samples and five quality control (QC) samples prepared from the study samples) were measured with GC × GC–MS and GC–MS to study the development and progression of insulin resistance, a primary characteristic of diabetes type 2. A total of 170 and 691 peaks were quantified in, respectively, the GC–MS and GC × GC–MS data for all study and QC samples. The quantitative results for the QC samples were compared to assess the quality of semi-automated GC × GC–MS processing compared to targeted GC–MS processing which involved time-consuming manual correction of all wrongly integrated metabolites and was considered as golden standard. The relative standard deviations (RSDs) obtained with GC × GC–MS were somewhat higher than with GC–MS, due to less accurate processing. Still, the biological information in the study samples was preserved and the added value of GC × GC–MS was demonstrated; many additional candidate biomarkers were found with GC × GC–MS compared to GC–MS

    Matrix Effect Compensation in Small-Molecule Profiling for an LC–TOF Platform Using Multicomponent Postcolumn Infusion

    No full text
    The possible presence of matrix effect is one of the main concerns in liquid chromatography–mass spectrometry (LC–MS)-driven bioanalysis due to its impact on the reliability of the obtained quantitative results. Here we propose an approach to correct for the matrix effect in LC–MS with electrospray ionization using postcolumn infusion of eight internal standards (PCI-IS). We applied this approach to a generic ultraperformance liquid chromatography–time-of-flight (UHPLC–TOF) platform developed for small-molecule profiling with a main focus on drugs. Different urine samples were spiked with 19 drugs with different physicochemical properties and analyzed in order to study matrix effect (in absolute and relative terms). Furthermore, calibration curves for each analyte were constructed and quality control samples at different concentration levels were analyzed to check the applicability of this approach in quantitative analysis. The matrix effect profiles of the PCI-ISs were different: this confirms that the matrix effect is compound-dependent, and therefore the most suitable PCI-IS has to be chosen for each analyte. Chromatograms were reconstructed using analyte and PCI-IS responses, which were used to develop an optimized method which compensates for variation in ionization efficiency. The approach presented here improved the results in terms of matrix effect dramatically. Furthermore, calibration curves of higher quality are obtained, dynamic range is enhanced, and accuracy and precision of QC samples is increased. The use of PCI-ISs is a very promising step toward an analytical platform free of matrix effect, which can make LC–MS analysis even more successful, adding a higher reliability in quantification to its intrinsic high sensitivity and selectivity

    Adult GAMT deficiency: A literature review and report of two siblings

    No full text
    Guanidinoacetate methyltransferase (GAMT) deficiency is a creatine deficiency disorder and an inborn error of metabolism presenting with progressive intellectual and neurological deterioration. As most cases are identified and treated in early childhood, adult phenotypes that can help in understanding the natural history of the disorder are rare. We describe two adult cases of GAMT deficiency from a consanguineous family in Pakistan that presented with a history of global developmental delay, cognitive impairments, excessive drooling, behavioral abnormalities, contractures and apparent bone deformities initially presumed to be the reason for abnormal gait. Exome sequencing identified a homozygous nonsense variant in GAMT: NM_000156.5:c.134G>A (p.Trp45*). We also performed a literature review and compiled the genetic and clinical characteristics of all adult cases of GAMT deficiency reported to date. When compared to the adult cases previously reported, the musculoskeletal phenotype and the rapidly progressive nature of neurological and motor decline seen in our patients is striking. This study presents an opportunity to gain insights into the adult presentation of GAMT deficiency and highlights the need for in-depth evaluation and reporting of clinical features to expand our understanding of the phenotypic spectrum

    Low-density lipoprotein receptor-knockout mice display impaired spatial memory associated with a decreased synaptic density in the hippocampus

    No full text
    The low-density lipoprotein receptor (LDLR) is the first described receptor for apolipoprotein E (apoE). We hypothesize that the absence of the LDLR, similar to the absence of apoE, results in impaired learning and memory processes. Six-month-old homozygous Ldlr-/- and wild-type littermates (Ldlr+/+), maintained on a standard lab chow diet, were used. Unlike humans, Ldlr-/- mice, under these conditions, do not develop atherosclerosis. The results of the Morris water escape task revealed an impaired spatial memory in the Ldlr-/- mice in comparison with Ldlr+/+ mice. Also in a T-maze task, the working memory performance of the Ldlr-/- mice was impaired. Furthermore, Ldlr-/- mice, in comparison with Ldlr+/+ mice, display a decreased number of synaptophysin-immunoreactive presynaptic boutons in the hippocampus CA1. In conclusion, the results show in mice deficiency for the LDLR results in impaired hippocampal-dependent memory functions. A decrease in the number of presynaptic boutons may underlay these behavioral alterations. Therefore, the LDLR may be an important receptor for apoE in the central nervous system

    Multi-Omic Approach to Identify Phenotypic Modifiers Underlying Cerebral Demyelination in X-Linked Adrenoleukodystrophy

    No full text
    X-linked adrenoleukodystrophy (ALD) is a peroxisomal metabolic disorder with a highly complex clinical presentation. ALD is caused by mutations in the ABCD1 gene, and is characterized by the accumulation of very long-chain fatty acids in plasma and tissues. Disease-causing mutations are ‘loss of function’ mutations, with no prognostic value with respect to the clinical outcome of an individual. All male patients with ALD develop spinal cord disease and a peripheral neuropathy in adulthood, although age of onset is highly variable. However, the lifetime prevalence to develop progressive white matter lesions, termed cerebral ALD (CALD), is only about 60%. Early identification of transition to CALD is critical since it can be halted by allogeneic hematopoietic stem cell therapy only in an early stage. The primary goal of this study is to identify molecular markers which may be prognostic of cerebral demyelination from a simple blood sample, with the hope that blood-based assays can replace the current protocols for diagnosis. We collected six well-characterized brother pairs affected by ALD and discordant for the presence of CALD and performed multi-omic profiling of blood samples including genome, epigenome, transcriptome, metabolome/lipidome, and proteome profiling. In our analysis we identify discordant genomic alleles present across all families as well as differentially abundant molecular features across the omics technologies. The analysis was focused on univariate modeling to discriminate the two phenotypic groups, but was unable to identify statistically significant candidate molecular markers. Our study highlights the issues caused by a large amount of inter-individual variation, and supports the emerging hypothesis that cerebral demyelination is a complex mix of environmental factors and/or heterogeneous genomic alleles. We confirm previous observations about the role of immune response, specifically auto-immunity and the potential role of PFN1 protein overabundance in CALD in a subset of the families. We envision our methodology as well as dataset has utility to the field for reproducing previous or enabling future modifier investigations

    Zebrafish development and regeneration: new tools for biomedical research

    No full text
    Basic research in pattern formation is concerned with the generation of phenotypes and tissues. It can therefore lead to new tools for medical research. These include phenotypic screening assays, applications in tissue engineering, as well as general advances in biomedical knowledge. Our aim here is to discuss this emerging field with special reference to tools based on zebrafish developmental biology. We describe phenotypic screening assays being developed in our own and other labs. Our assays involve: (i) systemic or local administration of a test compound or drug to zebrafish in vivo, (ii) the subsequent detection or "readout" of a defined phenotypic change. A positive readout may result from binding of the test compound to a molecular target involved in a developmental pathway. We present preliminary data on assays for compounds that modulate skeletal patterning, bone turnover, immune responses, inflammation and early-life stress. The assays use live zebrafish embryos and larvae as well as adult fish undergoing caudal fin regeneration. We describe proof-of-concept studies on the localised targeting of compounds into regeneration blastemas using microcarriers. Zebrafish are cheaper to maintain than rodents, produce large numbers of transparent eggs, and some zebrafish assays could be scaled-up into medium and high throughput screens. However, advances in automation and imaging are required. Zebrafish cannot replace mammalian models in the drug development pipeline. Nevertheless, they can provide a cost-effective bridge between cell-based assays and mammalian whole-organism model
    corecore