10 research outputs found
Rapid Enzyme-linked Immunosorbent Assay for Detection of the Algal Toxin Domoic Acid
Domoic acid (DA) is a potent toxin produced by bloom-forming phytoplankton in the genus Pseudo-nitzschia, which is responsible for causing amnesic shellfish poisoning (ASP) in humans. ASP symptoms include vomiting, diarrhea, and in more severe cases confusion, loss of memory, disorientation, and even coma or death. This paper describes the development and validation of a rapid, sensitive, enzyme linked immunosorbent assay test kit for detecting DA using a monoclonal antibody. The assay gives equivalent results to those obtained using standard high performance liquid chromatography, fluorenylmethoxycarbonyl high performance liquid chromatography, or liquid chromatography—mass spectrometry methods. It has a linear range from 0.1–3 ppb and was used successfully to measure DA in razor clams, mussels, scallops, and phytoplankton. The assay requires approximately 1.5 h to complete and has a standard 96-well format where each strip of eight wells is removable and can be stored at 4°C until needed. The first two wells of each strip serve as an internal control eliminating the need to run a standard curve. This allows as few as 3 or as many as 36 duplicate samples to be run at a time enabling real-time sample processing and limiting degradation of DA, which can occur during storage. There was minimal cross-reactivity in this assay with glutamine, glutamic acid, kainic acid, epi- or iso-DA. This accurate, rapid, cost-effective, assay offers environmental managers and public health officials an effective tool for monitoring DA concentrations in environment samples
Diverse and Highly Recombinant Anelloviruses Associated with Weddell Seals in Antarctica
The viruses circulating among Antarctic wildlife remain largely unknown. In an effort to identify viruses associated withWeddell seals (Leptonychotes weddellii) inhabiting the Ross Sea, vaginal and nasal swabs, and faecal samples were collectedbetween November 2014 and February 2015. In addition, a Weddell seal kidney and South Polar skua (Stercorariusmaccormicki) faeces were opportunistically sampled. Using high throughput sequencing, we identified and recovered 152anellovirus genomes that share 63–70% genome-wide identities with other pinniped anelloviruses. Genome-wide pairwisecomparisons coupled with phylogenetic analysis revealed two novel anellovirus species, tentatively named torque tenoLeptonychotes weddellii virus (TTLwV) -1 and -2. TTLwV-1 (n¼133, genomes encompassing 40 genotypes) is highly recom-binant, whereas TTLwV-2 (n¼19, genomes encompassing three genotypes) is relatively less recombinant. This study documents ubiquitous TTLwVs among Weddell seals in Antarctica with frequent co-infection by multiple genotypes, how-ever, the role these anelloviruses play in seal health remains unknown
Identification of a polyomavirus in Weddell seal (Leptonychotes weddellii) from the Ross Sea (Antarctica)
Viruses are ubiquitous in nature, however, very few have been identified that are associated with Antarctic animals. Here we report the identification of a polyomavirus in the kidney tissue of a deceased Weddell seal from the Ross Sea, Antarctica. The circular genome (5186 nt) has typical features of polyomaviruses with a small and larger T-antigen open reading frames (ORFs) and three ORFs encoding VP1, VP2 and VP3 capsid proteins. The genome of the Weddell seal polyomavirus (WsPyV) shares 85.4% genome-wide pairwise identity with a polyomavirus identified in a California sea lion. To our knowledge WsPyV is the first viral genome identified in Antarctic pinnipeds and the third polyomavirus to be identified from an Antarctic animal, the other two being from Adélie penguin (Pygoscelis adeliae) and a sharp-spined notothen (Trematomus pennellii), both sampled in the Ross sea. The GenBank accession number: KX533457
Baseline health parameters of rhinoceros auklets (Cerorhinca monocerata) using serum protein electrophoresis, acute phase proteins, and biochemistry
Clinical metrics of baseline health in sentinel seabird species can offer insight into marine ecosystem dynamics, individual and population health, and assist in wildlife rehabilitation and conservation efforts. Protein electrophoresis is useful for detecting changes in acute phase proteins and immunoglobulin levels that may indicate subtle inflammatory responses and/or infectious disease. Serum biochemistry can highlight nutritional status, metabolic derangements, and organ injury and function. However, baseline values for such health parameters are largely unknown for many seabird species. Therefore, the objective of this study is to establish baseline clinical health reference intervals for serum protein electrophoresis, acute phase proteins including serum amyloid A and haptoglobin, and biochemistry parameters in the rhinoceros auklet (Cerorhinca monocerata), a key sentinel species in the North Pacific. From 2013 to 2019, 178 wild, apparently healthy breeding adult rhinoceros auklets were captured across four breeding colonies in British Columbia, Canada (Lucy Island, Pine Island, Triangle Islands, and SGang Gwaay) and from one colony in Washington, United States (Protection Island). Reference intervals were calculated for protein electrophoresis fractions and acute phase proteins (n = 163), and serum biochemistry (n = 35) following established guidelines by the American Society of Veterinary Clinical Pathology. Animals were also assessed for the presence of antibodies to the influenza A virus. Approximately 48% (70/147) of sampled birds were seropositive for influenza A virus, with a prevalence of 50% (6/12) in 2013, 75% (47/63) in 2014, and 24% (17/72) in 2019. This work provides clinical baseline health metrics of a key North Pacific sentinel species to help inform marine ecosystem monitoring, recovery, and rehabilitation efforts in the Pacific Northwest
Recommended from our members
Diverse and highly recombinant anelloviruses associated with Weddell seals in Antarctica.
The viruses circulating among Antarctic wildlife remain largely unknown. In an effort to identify viruses associated with Weddell seals (Leptonychotes weddellii) inhabiting the Ross Sea, vaginal and nasal swabs, and faecal samples were collected between November 2014 and February 2015. In addition, a Weddell seal kidney and South Polar skua (Stercorarius maccormicki) faeces were opportunistically sampled. Using high throughput sequencing, we identified and recovered 152 anellovirus genomes that share 63-70% genome-wide identities with other pinniped anelloviruses. Genome-wide pairwise comparisons coupled with phylogenetic analysis revealed two novel anellovirus species, tentatively named torque teno Leptonychotes weddellii virus (TTLwV) -1 and -2. TTLwV-1 (n = 133, genomes encompassing 40 genotypes) is highly recombinant, whereas TTLwV-2 (n = 19, genomes encompassing three genotypes) is relatively less recombinant. This study documents ubiquitous TTLwVs among Weddell seals in Antarctica with frequent co-infection by multiple genotypes, however, the role these anelloviruses play in seal health remains unknown
Diverse and highly recombinant anelloviruses associated with Weddell seals in Antarctica.
The viruses circulating among Antarctic wildlife remain largely unknown. In an effort to identify viruses associated with Weddell seals (Leptonychotes weddellii) inhabiting the Ross Sea, vaginal and nasal swabs, and faecal samples were collected between November 2014 and February 2015. In addition, a Weddell seal kidney and South Polar skua (Stercorarius maccormicki) faeces were opportunistically sampled. Using high throughput sequencing, we identified and recovered 152 anellovirus genomes that share 63-70% genome-wide identities with other pinniped anelloviruses. Genome-wide pairwise comparisons coupled with phylogenetic analysis revealed two novel anellovirus species, tentatively named torque teno Leptonychotes weddellii virus (TTLwV) -1 and -2. TTLwV-1 (n = 133, genomes encompassing 40 genotypes) is highly recombinant, whereas TTLwV-2 (n = 19, genomes encompassing three genotypes) is relatively less recombinant. This study documents ubiquitous TTLwVs among Weddell seals in Antarctica with frequent co-infection by multiple genotypes, however, the role these anelloviruses play in seal health remains unknown