5,624 research outputs found

    The Influence of Dichromate Ions on Aluminum Dissolution Kinetics in Artificial Crevice Electrode Cells

    Get PDF
    Dissolution kinetics for pits and crevices in aluminum and the effect of dichromate ions on the dissolution kinetics were investigated by using artificial crevice electrodes. The aluminum artificial crevice electrodes were potentiostatically polarized over a range of potential in 0.1 M NaCl solution with and without dichromate ions. The anodic dissolution charge, and cathodic charges for the hydrogen and dichromate reduction reactions, were measured. The addition of dichromate ions did not suppress the active dissolution. This indicates that the mechanism of localized corrosion inhibition by dichromates is something other than anodic inhibition of Al dissolution in the pit or crevice environment. The relative amount of local cathodic reactions on Al was increased by the addition of dichromate because of the dichromate reduction. The initial dissolution of aluminum in a crevice was ohmic controlled. From the change in the dissolution current with time, the conductivity of the crevice and potential at the bottom of crevice were estimated. The conductivity and the bottom potential decreased with the ratio of cathodic charge of hydrogen evolution to anodic dissolution charge. The conductivity in the crevice and thus the dissolution current seem to be controlled by hydrogen evolution and only indirectly by dichromate concentration.This work was supported by the Air Force Office of Scientific Research under contract no. F49620-96-1-0479

    Breadboard linear array scan imager using LSI solid-state technology

    Get PDF
    The performance of large scale integration photodiode arrays in a linear array scan (pushbroom) breadboard was evaluated for application to multispectral remote sensing of the earth's resources. The technical approach, implementation, and test results of the program are described. Several self scanned linear array visible photodetector focal plane arrays were fabricated and evaluated in an optical bench configuration. A 1728-detector array operating in four bands (0.5 - 1.1 micrometer) was evaluated for noise, spectral response, dynamic range, crosstalk, MTF, noise equivalent irradiance, linearity, and image quality. Other results include image artifact data, temporal characteristics, radiometric accuracy, calibration experience, chip alignment, and array fabrication experience. Special studies and experimentation were included in long array fabrication and real-time image processing for low-cost ground stations, including the use of computer image processing. High quality images were produced and all objectives of the program were attained

    Eigenvalue Separation in Some Random Matrix Models

    Full text link
    The eigenvalue density for members of the Gaussian orthogonal and unitary ensembles follows the Wigner semi-circle law. If the Gaussian entries are all shifted by a constant amount c/Sqrt(2N), where N is the size of the matrix, in the large N limit a single eigenvalue will separate from the support of the Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis of the secular equation for the eigenvalue condition, we compare this effect to analogous effects occurring in general variance Wishart matrices and matrices from the shifted mean chiral ensemble. We undertake an analogous comparative study of eigenvalue separation properties when the size of the matrices are fixed and c goes to infinity, and higher rank analogues of this setting. This is done using exact expressions for eigenvalue probability densities in terms of generalized hypergeometric functions, and using the interpretation of the latter as a Green function in the Dyson Brownian motion model. For the shifted mean Gaussian unitary ensemble and its analogues an alternative approach is to use exact expressions for the correlation functions in terms of classical orthogonal polynomials and associated multiple generalizations. By using these exact expressions to compute and plot the eigenvalue density, illustrations of the various eigenvalue separation effects are obtained.Comment: 25 pages, 9 figures include

    "Marginal pinching" in soap films

    Full text link
    We discuss the behaviour of a thin soap film facing a frame element: the pressure in the Plateau border around the frame is lower than the film pressure, and the film thins out over a certain distance lambda(t), due to the formation of a well-localized pinched region of thickness h(t) and extension w(t). We construct a hydrodynamic theory for this thinning process, assuming a constant surface tension: Marangoni effects are probably important only at late stages, where instabilitites set in. We find lambda(t) ~ t^{1/4}, and for the pinch dimensions h(t) ~ t^{-1/2}$ and w(t) ~ t^{-1/4}. These results may play a useful role for the discussion of later instabilitites leading to a global film thinning and drainage, as first discussed by K. Mysels under the name ``marginal regeneration''.Comment: 7 pages, 2 figure

    Energy-momentum conservation in pre-metric electrodynamics with magnetic charges

    Full text link
    A necessary and sufficient condition for energy-momentum conservation is proved within a topological, pre-metric approach to classical electrodynamics including magnetic as well as electric charges. The extended Lorentz force, consisting of mutual actions by F=(E, B) on the electric current and G=(H, D) on the magnetic current, can be derived from an energy-momentum "potential" if and only if the constitutive relation G=G(F) satisfies a certain vanishing condition. The electric-magnetic reciprocity introduced by Hehl and Obukhov is seen to define a complex structure on the tensor product of 2-form pairs (F,G) which is independent of but consistent with the Hodge star operator defined by any Lorentzian metric. Contrary to a recent claim in the literature, it does not define a complex structure on the space of 2-forms itself.Comment: 8 pages, 1 fugur

    Asymptotic corrections to the eigenvalue density of the GUE and LUE

    Full text link
    We obtain correction terms to the large N asymptotic expansions of the eigenvalue density for the Gaussian unitary and Laguerre unitary ensembles of random N by N matrices, both in the bulk of the spectrum and near the spectral edge. This is achieved by using the well known orthogonal polynomial expression for the kernel to construct a double contour integral representation for the density, to which we apply the saddle point method. The main correction to the bulk density is oscillatory in N and depends on the distribution function of the limiting density, while the corrections to the Airy kernel at the soft edge are again expressed in terms of the Airy function and its first derivative. We demonstrate numerically that these expansions are very accurate. A matching is exhibited between the asymptotic expansion of the bulk density, expanded about the edge, and the asymptotic expansion of the edge density, expanded into the bulk.Comment: 14 pages, 4 figure

    Analytic solutions of the 1D finite coupling delta function Bose gas

    Full text link
    An intensive study for both the weak coupling and strong coupling limits of the ground state properties of this classic system is presented. Detailed results for specific values of finite NN are given and from them results for general NN are determined. We focus on the density matrix and concomitantly its Fourier transform, the occupation numbers, along with the pair correlation function and concomitantly its Fourier transform, the structure factor. These are the signature quantities of the Bose gas. One specific result is that for weak coupling a rational polynomial structure holds despite the transcendental nature of the Bethe equations. All these new results are predicated on the Bethe ansatz and are built upon the seminal works of the past.Comment: 23 pages, 0 figures, uses rotate.sty. A few lines added. Accepted by Phys. Rev.

    Geometrical approach to the proton spin decomposition

    Full text link
    We discuss in detail and from the geometrical point of view the issues of gauge invariance and Lorentz covariance raised by the approach proposed recently by Chen et al. to the proton spin decomposition. We show that the gauge invariance of this approach follows from a mechanism similar to the one used in the famous Stueckelberg trick. Stressing the fact that the Lorentz symmetry does not force the gauge potential to transform as a Lorentz four-vector, we show that the Chen et al. approach is Lorentz covariant provided that one uses the suitable Lorentz transformation law. We also make an attempt to summarize the present situation concerning the proton spin decomposition. We argue that the ongoing debates concern essentially the physical interpretation and are due to the plurality of the adopted pictures. We discuss these different pictures and propose a pragmatic point of view.Comment: 39 pages, 1 figure, updated version to appear in PRD (2013

    Effects of Sodium Chloride Particles, Ozone, UV, and Relative Humidity on Atmospheric Corrosion of Silver

    Get PDF
    The corrosion of Ag contaminated with NaCl particles in gaseous environments containing humidity and ozone was investigated. In particular, the effects of relative humidity and UV light illumination were quantitatively analyzed using a coulometric reduction technique. The atmospheric corrosion of Ag was greatly accelerated in the presence of ozone and UV light. Unlike bare Ag (i.e., with no NaCl particles on the surface), Ag with NaCl exhibited fast corrosion even in the dark, with no UV in the presence of ozone. Samples exposed to different outdoor environments and samples exposed in a salt spray chamber were studied for comparison. Ag corroded at extremely low rates in a salt spray chamber partly because of the combined absence of light and oxidizing agents such as ozone

    Storage and Release of Soluble Hexavalent Chromium from Chromate Conversion Coatings on Al Alloys Kinetics of Release

    Get PDF
    The release of chromate ions from chromate conversion coatings (CCCs) on Al alloys was studied, and the effect of aging of CCCs on the chromate release kinetics was investigated. Chromate release from CCCs into aqueous solutions was monitored by measuring the change in the chromate concentration in solution using UV-visible spectroscopy. Heat-treatment of the CCC greatly reduced the chromate release rate. The chromate release rate also decreased with increasing aging time at room temperature. A diffusion-control model was proposed based on the notion that the CCC in an aqueous solution is a porous, two-phase structure consisting of a solid phase with adsorbed Cr(VI) species that is in local Langmuir-type equilibrium with an interpenetrating solution phase. This model results in a concentration gradient of soluble Cr(VI) in the solution phase of the CCC as chromate is released. The concentration and diffusion coefficients of soluble Cr(VI) in CCC were estimated. The estimated diffusion coefficient tended to decrease with aging time, suggesting that the CCC is modified with aging time.This work was supported under Air Force Office of Scientific Research Multidisciplinary University Research Initiative contract no. F49620-96-1-0479
    • …
    corecore