10,993 research outputs found
Zero-mode contribution to the light-front Hamiltonian of Yukawa type models
Light-front Hamiltonian for Yukawa type models is determined without the
framework of canonical light-front formalism. Special attention is given to the
contribution of zero modes.Comment: 14 pages, Latex, revised version with minor changes, Submitted to
J.Phys.
Calculation of the Mass Spectrum of QED-2 in Light-Front Coordinates
With the aim of a further investigation of the nonperturbative Hamiltonian
approach in gauge field theories, the mass spectrum of QED-2 is calculated
numerically by using the corrected Hamiltonian that was constructed previously
for this theory on the light front. The calculations are performed for a wide
range of the ratio of the fermion mass to the fermion charge at all values of
the parameter \hat\theta related to the vacuum angle \theta. The results
obtained in this way are compared with the results of known numerical
calculations on a lattice in Lorentz coordinates. A method is proposed for
extrapolating the values obtained within the infrared-regularized theory to the
limit where the regularization is removed. The resulting spectrum agrees well
with the known results in the case of \theta=0; in the case of \theta=\pi,
there is agreement at small values of the fermion mass (below the
phase-transition point).Comment: LaTex 2.09, 20 pages, 7 figures. New improved expression for the
effective LF Hamiltonian was adde
Field Tuning of Ferromagnetic Domain Walls on Elastically Coupled Ferroelectric Domain Boundaries
We report on the evolution of ferromagnetic domain walls during magnetization
reversal in elastically coupled ferromagnetic-ferroelectric heterostructures.
Using optical polarization microscopy and micromagnetic simulations, we
demonstrate that the spin rotation and width of ferromagnetic domain walls can
be accurately controlled by the strength of the applied magnetic field if the
ferromagnetic walls are pinned onto 90 degrees ferroelectric domain boundaries.
Moreover, reversible switching between magnetically charged and uncharged
domain walls is initiated by magnetic field rotation. Switching between both
wall types reverses the wall chirality and abruptly changes the width of the
ferromagnetic domain walls by up to 1000%.Comment: 5 pages, 5 figure
Resolution of Single Spin-Flips of a Single Proton
The spin magnetic moment of a single proton in a cryogenic Penning trap was
coupled to the particle's axial motion with a superimposed magnetic bottle.
Jumps in the oscillation frequency indicate spin-flips and were identified
using a Bayesian analysis.Comment: accepted for publication by Phys. Rev. Lett., submitted 6.June.201
Full dynamic resolution low lower DA-Converters for flat panel displays
It has been shown that stepwise charging can reduce the power dissipated in the source drivers of a flat panel display. However the solution presented only provided a dynamic resolution of 3 bits which is not sufficient for obtaining a full color resolution display. In this work a further development of the basic idea is presented. The stepwise charging is increased to 4 bits and supplemented by a current source to provide an output signal which represents an 8 bit value with sufficient accuracy. Within this work the application is an AM-OLED flat panel display, but the concept can easily be applied to other display technologies like TFT-LCD as well
Records and sequences of records from random variables with a linear trend
We consider records and sequences of records drawn from discrete time series
of the form , where the are independent and identically
distributed random variables and is a constant drift. For very small and
very large drift velocities, we investigate the asymptotic behavior of the
probability of a record occurring in the th step and the
probability that all entries are records, i.e. that . Our work is motivated by the analysis of temperature time series in
climatology, and by the study of mutational pathways in evolutionary biology.Comment: 21 pages, 7 figure
Model for SU(3) vacuum degeneracy using light-cone coordinates
Working in light-cone coordinates, we study the zero-modes and the vacuum in
a 2+1 dimensional SU(3) gauge model. Considering the fields as independent of
the tranverse variables, we dimensionally reduce this model to 1+1 dimensions.
After introducing an appropriate su(3) basis and gauge conditions, we extract
an adjoint field from the model. Quantization of this adjoint field and field
equations lead to two constrained and two dynamical zero-modes. We link the
dynamical zero-modes to the vacuum by writing down a Schrodinger equation and
prove the non-degeneracy of the SU(3) vacuum provided that we neglect the
contribution of constrained zero-modes.Comment: 22 pages, 5 figure
On Zero Modes and the Vacuum Problem -- A Study of Scalar Adjoint Matter in Two-Dimensional Yang-Mills Theory via Light-Cone Quantisation
SU(2) Yang-Mills Theory coupled to massive adjoint scalar matter is studied
in (1+1) dimensions using Discretised Light-Cone Quantisation. This theory can
be obtained from pure Yang-Mills in 2+1 dimensions via dimensional reduction.
On the light-cone, the vacuum structure of this theory is encoded in the
dynamical zero mode of a gluon and a constrained mode of the scalar field. The
latter satisfies a linear constraint, suggesting no nontrivial vacua in the
present paradigm for symmetry breaking on the light-cone. I develop a
diagrammatic method to solve the constraint equation. In the adiabatic
approximation I compute the quantum mechanical potential governing the
dynamical gauge mode. Due to a condensation of the lowest omentum modes of the
dynamical gluons, a centrifugal barrier is generated in the adiabatic
potential. In the present theory however, the barrier height appears too small
to make any impact in this odel. Although the theory is superrenormalisable on
naive powercounting grounds, the removal of ultraviolet divergences is
nontrivial when the constrained mode is taken into account. The open aspects of
this problem are discussed in detail.Comment: LaTeX file, 26 pages. 14 postscript figure
A Multi-Armed Bandit to Smartly Select a Training Set from Big Medical Data
With the availability of big medical image data, the selection of an adequate
training set is becoming more important to address the heterogeneity of
different datasets. Simply including all the data does not only incur high
processing costs but can even harm the prediction. We formulate the smart and
efficient selection of a training dataset from big medical image data as a
multi-armed bandit problem, solved by Thompson sampling. Our method assumes
that image features are not available at the time of the selection of the
samples, and therefore relies only on meta information associated with the
images. Our strategy simultaneously exploits data sources with high chances of
yielding useful samples and explores new data regions. For our evaluation, we
focus on the application of estimating the age from a brain MRI. Our results on
7,250 subjects from 10 datasets show that our approach leads to higher accuracy
while only requiring a fraction of the training data.Comment: MICCAI 2017 Proceeding
- …