36 research outputs found

    Настільна книга майбутнього юриста

    Get PDF
    Рецензія на посібник: Мироненко О. М., Горбатенко В. П. Історія вчень про державу і право: навч. посіб. / О. М. Мироненко, В. П. Горбатенко. - К.: ВЦ «Академія», 2010. - 456 с. (Серія «Альма-матер»)

    Evaluation of the Thermal Response of the Horns in Dairy Cattle

    Get PDF
    Dairy cattle are typically disbudded or dehorned. Little is known, however, about the biological function and role of horns during thermoregulatory processes in cattle, and thus about the potential physiological consequences of horn removal. Anecdotal evidence suggests that dairy cow horns increase in temperature during rumination, and few studies on other bovid species indicate that horns aid thermoregulation. The objective of this study was, therefore, to elucidate a possible thermoregulatory function of the horns in dairy cattle. Using non-invasive infrared thermography, we measured the superficial temperature of the horns, eyes, and ears of 18 focal cows on three different farms in a temperate climate zone under various environmental circumstances. Observations of social and non-social behaviours were conducted as well. Based on environmental temperature, humidity, and wind speed, the heat load index (HLI) was calculated as a measure of the heat load experienced by a cow. The temperature of the horns increased by 0.18 °C per unit HLI, indicating that horns serve the dissipation of heat. Dehorned cows had higher eye temperatures than horned cows, though this result should be interpreted with caution as the low sample size and experimental setup prevent casual conclusions. We did not, however, find changes in horn temperature during rumination, nor with any other behaviours. Our study thus supports a role of horns in thermoregulation, but not related to rumination. These results should be considered when assessing the potential consequences of horn removal, a painful procedure

    Using expert elicitation to abridge the Welfare Quality® protocol for monitoring the most adverse dairy cattle welfare impairments

    Get PDF
    The Welfare Quality® consortium has developed and proposed standard protocols for monitoring farm animal welfare. The uptake of the dairy cattle protocol has been below expectation, however, and it has been criticized for the variable quality of the welfare measures and for a limited number of measures having a disproportionally large effect on the integrated welfare categorization. Aiming for a wide uptake by the milk industry, we revised and simplified the Welfare Quality® protocol into a user-friendly tool for cost- and time-efficient on-farm monitoring of dairy cattle welfare with a minimal number of key animal-based measures that are aggregated into a continuous (and thus discriminative) welfare index (WI). The inevitable subjective decisions were based upon expert opinion, as considerable expertise about cattle welfare issues and about the interpretation, importance, and validity of the welfare measures was deemed essential. The WI is calculated as the sum of the severity score (i.e., how severely a welfare problem affects cow welfare) multiplied with the herd prevalence for each measure. The selection of measures (lameness, leanness, mortality, hairless patches, lesions/swellings, somatic cell count) and their severity scores were based on expert surveys (14–17 trained users of the Welfare Quality® cattle protocol). The prevalence of these welfare measures was assessed in 491 European herds. Experts allocated a welfare score (from 0 to 100) to 12 focus herds for which the prevalence of each welfare measure was benchmarked against all 491 herds. Quadratic models indicated a high correspondence between these subjective scores and the WI (R(2) = 0.91). The WI allows both numerical (0–100) as a qualitative (“not classified” to “excellent”) evaluation of welfare. Although it is sensitive to those welfare issues that most adversely affect cattle welfare (as identified by EFSA), the WI should be accompanied with a disclaimer that lists adverse or favorable effects that cannot be detected adequately by the current selection of measures

    Design of Free Stalls for Dairy Herds: A Review

    No full text
    Lying is an important behavior of dairy cattle. Cows should spend more than 50% of a day lying as it has a high impact on their milk yield and animal welfare. The design, size, and flooring properties of the free stalls influence the time cows spend lying, the way they lie down, and their rising movements. The purpose of this review is to provide an overview of the currently available information with the aim to assist farmers and advisors to come to an optimal design of the free stalls. The design of the free stalls should enable the cows to move and lie in positions as natural as possible. Cows should rest, with all parts of the body, on a clean, dry and soft bed, be able to stretch their front legs forward, lie on their sides with unobstructed space for their neck and head, and rest with their heads against their flanks without hindrance from a partition. When they stand, they should not be hindered by neck rails, partitions, or supports. A comfortable place for cows to lie down helps cows to stay healthy, improve welfare, and increase milk yield. Hence, the probability of a longer productive life for the cows increases and the number of replacements per year decreases

    Design of free stalls for dairy herds: A review.

    Get PDF
    Lying is an important behavior of dairy cattle. Cows should spend more than 50% of a day lying as it has a high impact on their milk yield and animal welfare. The design, size, and flooring properties of the free stalls influence the time cows spend lying, the way they lie down, and their rising movements. The purpose of this review is to provide an overview of the currently available information with the aim to assist farmers and advisors to come to an optimal design of the free stalls. The design of the free stalls should enable the cows to move and lie in positions as natural as possible. Cows should rest, with all parts of the body, on a clean, dry and soft bed, be able to stretch their front legs forward, lie on their sides with unobstructed space for their neck and head, and rest with their heads against their flanks without hindrance from a partition. When they stand, they should not be hindered by neck rails, partitions, or supports. A comfortable place for cows to lie down helps cows to stay healthy, improve welfare, and increase milk yield. Hence, the probability of a longer productive life for the cows increases and the number of replacements per year decreases

    Design of free stalls for dairy herds: A review.

    No full text
    Lying is an important behavior of dairy cattle. Cows should spend more than 50% of a day lying as it has a high impact on their milk yield and animal welfare. The design, size, and flooring properties of the free stalls influence the time cows spend lying, the way they lie down, and their rising movements. The purpose of this review is to provide an overview of the currently available information with the aim to assist farmers and advisors to come to an optimal design of the free stalls. The design of the free stalls should enable the cows to move and lie in positions as natural as possible. Cows should rest, with all parts of the body, on a clean, dry and soft bed, be able to stretch their front legs forward, lie on their sides with unobstructed space for their neck and head, and rest with their heads against their flanks without hindrance from a partition. When they stand, they should not be hindered by neck rails, partitions, or supports. A comfortable place for cows to lie down helps cows to stay healthy, improve welfare, and increase milk yield. Hence, the probability of a longer productive life for the cows increases and the number of replacements per year decreases

    Lying Postures of Dairy Cows in Cubicles and on Pasture

    No full text
    Cows housed indoors with cubicles are probably more restricted in their choice of lying posture and orientation compared with cows housed on pasture. We therefore compared lying postures on pasture in Uruguay and the Netherlands with lying postures in cubicles in the Netherlands, also recording orientation on pasture in Uruguay and divider and bedding type in Dutch cubicles. We visited one farm with four herds in Uruguay, doing live observations, and 25 Dutch farms, taking pictures of cows. Observations of 205 cows on pasture in Uruguay showed more long postures, lying on their belly with their neck stretched. Two herds preferred lying towards north and south, while one herd preferred west and east. Pictures of 217 cows on pasture in the Netherlands showed more wide postures (lying on the side with three or four legs stretched out). Pictures of 527 cows in cubicles in the Netherlands showed more narrow postures (lying on the side with hind legs folded). More long postures (lying on the belly with a stretched neck) and less short postures (lying with the head folded back) were seen in cubicles with soft floors and English dividers; more narrow postures were seen in cubicles with concrete floors. Wide postures were seen more in cubicles with mattresses and free-hanging dividers. We conclude that since cows in cubicles show more narrow postures than on pasture and cannot choose their orientation, their choice in showing preferred behavior is restricted. More research is needed to study the consequences of restricted choice in lying behavior on the health and welfare of dairy cows

    Lying Postures of Dairy Cows in Cubicles and on Pasture

    No full text
    Cows housed indoors with cubicles are probably more restricted in their choice of lying posture and orientation compared with cows housed on pasture. We therefore compared lying postures on pasture in Uruguay and the Netherlands with lying postures in cubicles in the Netherlands, also recording orientation on pasture in Uruguay and divider and bedding type in Dutch cubicles. We visited one farm with four herds in Uruguay, doing live observations, and 25 Dutch farms, taking pictures of cows. Observations of 205 cows on pasture in Uruguay showed more long postures, lying on their belly with their neck stretched. Two herds preferred lying towards north and south, while one herd preferred west and east. Pictures of 217 cows on pasture in the Netherlands showed more wide postures (lying on the side with three or four legs stretched out). Pictures of 527 cows in cubicles in the Netherlands showed more narrow postures (lying on the side with hind legs folded). More long postures (lying on the belly with a stretched neck) and less short postures (lying with the head folded back) were seen in cubicles with soft floors and English dividers; more narrow postures were seen in cubicles with concrete floors. Wide postures were seen more in cubicles with mattresses and free-hanging dividers. We conclude that since cows in cubicles show more narrow postures than on pasture and cannot choose their orientation, their choice in showing preferred behavior is restricted. More research is needed to study the consequences of restricted choice in lying behavior on the health and welfare of dairy cows

    Leveraging sequential information from multivariate behavioral sensor data to predict the moment of calving in dairy cattle using deep learning

    No full text
    Calving is one of the most critical moments during the life of a cow and their calves. Timely supervision is therefore crucial for animal welfare as well as the farm economics. In this study, we propose a framework to predict calving within 24 h, 12 h, 6 h, 3 h and 1 h of dairy cows using sequential sensor data. In particular, data were extracted from 2363 cows coming from 8 commercial farms between August 2016 and November 2020. Two sensors attached to the neck and leg of each cow measured rumination, eating, lying, standup, walking and inactive behavior on a minute basis. A novel methodology was used to impute the missing values in the sensor sequences by leveraging the observed values of all the behavioral activities recorded by the sensors. A deep learning model was then used to predict the moment of calving on an hourly basis using the imputed sensor sequences. Results show that 65% of the calvings within 24 h can be detected with a precision of 77%, while 57% of calvings occurring within 3 h can be identified with a precision equal to 49%. Moreover, we find that using the missing value imputations significantly improves the predictive performance for observations containing up to 60% of missing values. The framework proposed in this study can be used by farmers to optimize their calving management and hence improve animal monitoring
    corecore