6,169 research outputs found

    Variable Powder Flow Rate Control in Laser Metal Deposition Processes

    Get PDF
    This paper proposes a novel technique, called Variable Powder Flow Rate Control (VPFRC), for the regulation of powder flow rate in laser metal deposition processes. The idea of VPFRC is to adjust the powder flow rate to maintain a uniform powder deposition per unit length even when disturbances occur (e.g., the motion system accelerates and decelerates). Dynamic models of the powder delivery system motor and the powder transport system (i.e., five–meter pipe, powder dispenser, and cladding head) are first constructed. A general tracking controller is then designed to track variable powder flow rate references. Since the powder flow rate at the nozzle exit cannot be directly measured, it is estimated using the powder transport system model. The input to this model is the DC motor rotation speed, which is estimated on–line using a Kalman filter. Experiments are conducted to examine the performance of the proposed control methodology. The experimental results demonstrate that VPFRC is successful in maintaining a uniform track morphology, even when the motion control system accelerates and decelerates.Mechanical Engineerin

    Medical 3D printing: methods to standardize terminology and report trends.

    Get PDF
    BackgroundMedical 3D printing is expanding exponentially, with tremendous potential yet to be realized in nearly all facets of medicine. Unfortunately, multiple informal subdomain-specific isolated terminological 'silos' where disparate terminology is used for similar concepts are also arising as rapidly. It is imperative to formalize the foundational terminology at this early stage to facilitate future knowledge integration, collaborative research, and appropriate reimbursement. The purpose of this work is to develop objective, literature-based consensus-building methodology for the medical 3D printing domain to support expert consensus.ResultsWe first quantitatively survey the temporal, conceptual, and geographic diversity of all existing published applications within medical 3D printing literature and establish the existence of self-isolating research clusters. We then demonstrate an automated objective methodology to aid in establishing a terminological consensus for the field based on objective analysis of the existing literature. The resultant analysis provides a rich overview of the 3D printing literature, including publication statistics and trends globally, chronologically, technologically, and within each major medical discipline. The proposed methodology is used to objectively establish the dominance of the term "3D printing" to represent a collection of technologies that produce physical models in the medical setting. We demonstrate that specific domains do not use this term in line with objective consensus and call for its universal adoption.ConclusionOur methodology can be applied to the entirety of medical 3D printing literature to obtain a complete, validated, and objective set of recommended and synonymous definitions to aid expert bodies in building ontological consensus

    Improving Productivity of Multiphase Flow Aerobic Oxidation Using a Tube-in-Tube Membrane Contactor

    Get PDF
    The application of flow reactors in multiphase catalytic reactions represents a promising approach for enhancing the efficiency of this important class of chemical reactions. We developed a simple approach to improve the reactor productivity of multiphase catalytic reactions performed using a flow chemistry unit with a packed bed reactor. Specifically, a tube-in-tube membrane contactor (sparger) integrated in-line with the flow reactor has been successfully applied to the aerobic oxidation of benzyl alcohol to benzaldehyde utilizing a heterogeneous palladium catalyst in the packed bed. We examined the effect of sparger hydrodynamics on reactor productivity quantified by space time yield (STY). Implementation of the sparger, versus segmented flow achieved with the built in gas dosing module (1) increased reactor productivity 4-fold quantified by space time yield while maintaining high selectivity and (2) improved process safety as demonstrated by lower effective operating pressures

    ACL Anthology Helper: A Tool to Retrieve and Manage Literature from ACL Anthology

    Full text link
    The ACL Anthology is an online repository that serves as a comprehensive collection of publications in the field of natural language processing (NLP) and computational linguistics (CL). This paper presents a tool called ``ACL Anthology Helper''. It automates the process of parsing and downloading papers along with their meta-information, which are then stored in a local MySQL database. This allows for efficient management of the local papers using a wide range of operations, including "where," "group," "order," and more. By providing over 20 operations, this tool significantly enhances the retrieval of literature based on specific conditions. Notably, this tool has been successfully utilised in writing a survey paper (Tang et al.,2022a). By introducing the ACL Anthology Helper, we aim to enhance researchers' ability to effectively access and organise literature from the ACL Anthology. This tool offers a convenient solution for researchers seeking to explore the ACL Anthology's vast collection of publications while allowing for more targeted and efficient literature retrieval

    Development of a Melt Pool Tracking Vision System for Laser Deposition

    Get PDF
    This paper chronicles the development of a vision system for tracking melt pool morphology in the laser metal deposition process. This development is to augment an existing temperature feedback control system. Monitoring both the temperature and shape of the melt pool is necessary because of the effects of local geometry on the cooling rate at the melt pool. Temperature feedback alone cannot accommodate this effect without complex process planning. The vision system’s hardware, software, and integration into the laser deposition system’s controller is detailed in this paper. Preliminary testing and the effects on deposition quality is also discussed.Mechanical Engineerin

    Matrix Product State Fixed Points of Non-Hermitian Transfer Matrices

    Full text link
    The contraction of tensor networks is a central task in the application of tensor network methods to the study of quantum and classical many body systems. In this paper, we investigate the impact of gauge degrees of freedom in the virtual indices of the tensor network on the contraction process, specifically focusing on boundary matrix product state methods for contracting two-dimensional tensor networks. We show that the gauge transformation can affect the entanglement structures of the eigenstates of the transfer matrix and change how the physical information is encoded in the eigenstates, which can influence the accuracy of the numerical simulation. We demonstrate this effect by looking at two different examples. First, we focus on the local gauge transformation, and analyze its effect by viewing it as an imaginary-time evolution governed by a diagonal Hamiltonian. As a specific example, we perform a numerical analysis in the classical Ising model on the square lattice. Second, we go beyond the scope of local gauge transformations and study the antiferromagnetic Ising model on the triangular lattice. The partition function of this model has two tensor network representations connected by a non-local gauge transformation, resulting in distinct numerical performances in the boundary MPS calculation.Comment: 12 pages, 14 figure

    The Development of RFID in Healthcare in Taiwan

    Get PDF
    Healthcare industry has unique characteristic about human’s life. Any mistake or medical error will cause the irretrievable regret. Patient safety is the most important issue in recent years. Because the uncertainly of disease occur, the demand of healthcare need, location and types are changed frequently. By the presure of “Self Management Plan”, how to make limited healthcare more effectiveness and effecency is critical for survival. Radio Frequency Identification (RFID) can be able to provide to identify, tracking and tracing for patient or medical objects directly and continuously. RFID is made object wisdom and process automation. It debase the cost of collect data from first-line in tradition MIS. RFID in Taiwan is more famous. There are four kinds of applications in healthcare industry. Some of them will be the killer application when government’s policy trigger and industry full-scale implement in the future. There are six hospitals deploy RFID in pilot plans by government support. And there are still some necks of bottle in deployment. The research assisted by foreign research and extracts by the experience in expert interview. We point out the critical deployment factors by five dimensions, including: system technology (system readable rate, frequency limitation, instrument interference & Human healthy, and transmission distance), system cost, common standard, health industry infrastructure and system integrate, and the issues in privacy and security by patient. The future research tries to find out the total solution to deploy RFID in healthcare industry to build up the” patient safety healthcare environment”

    Optimising Spatial and Tonal Data for PDE-based Inpainting

    Full text link
    Some recent methods for lossy signal and image compression store only a few selected pixels and fill in the missing structures by inpainting with a partial differential equation (PDE). Suitable operators include the Laplacian, the biharmonic operator, and edge-enhancing anisotropic diffusion (EED). The quality of such approaches depends substantially on the selection of the data that is kept. Optimising this data in the domain and codomain gives rise to challenging mathematical problems that shall be addressed in our work. In the 1D case, we prove results that provide insights into the difficulty of this problem, and we give evidence that a splitting into spatial and tonal (i.e. function value) optimisation does hardly deteriorate the results. In the 2D setting, we present generic algorithms that achieve a high reconstruction quality even if the specified data is very sparse. To optimise the spatial data, we use a probabilistic sparsification, followed by a nonlocal pixel exchange that avoids getting trapped in bad local optima. After this spatial optimisation we perform a tonal optimisation that modifies the function values in order to reduce the global reconstruction error. For homogeneous diffusion inpainting, this comes down to a least squares problem for which we prove that it has a unique solution. We demonstrate that it can be found efficiently with a gradient descent approach that is accelerated with fast explicit diffusion (FED) cycles. Our framework allows to specify the desired density of the inpainting mask a priori. Moreover, is more generic than other data optimisation approaches for the sparse inpainting problem, since it can also be extended to nonlinear inpainting operators such as EED. This is exploited to achieve reconstructions with state-of-the-art quality. We also give an extensive literature survey on PDE-based image compression methods
    • …
    corecore