82 research outputs found
Proceedings of the MARESEC 2022
The second European Workshop on Maritime Systems Resilience and Security (MARESEC) was dedicated to the research on Resilience, Security, Technology and related Ethical, Legal, and Social Aspects (ELSA) in the context of Maritime Systems, including but not restricted to (Offshore/Onshore) Infrastructures, Navigation and Shipping and Autonomous Systems. The event, which was organized by the Institute for the Protection of Maritime Infrastructures of the German Aerospace Center (DLR), occurred in a hybrid manner on June, 20th 2022. It counted on 79 participants online and onside at the Fischbahnhof, Bremerhaven, Germany. Out of all submitted extended abstracts, 24 submissions had been selected for presentation. Additionally, 2 works of
undergraduate and graduate students have been presented (the final schedule can be found in the appendix). The authors are affiliated to institutions from Canada, Egypt, Finland, Germany, Greece, Norway, Poland, Switzerland, United Kingdom, United States
Effect of matrix-modulating enzymes on the cellular uptake of magnetic nanoparticles and on magnetic hyperthermia treatment of pancreatic cancer models in vivo
Magnetic hyperthermia can cause localized thermal eradication of several solid cancers. However, a localized and homogenous deposition of high concentrations of magnetic nanomaterials into the tumor stroma and tumor cells is mostly required. Poorly responsive cancers such as the pancreatic adenocarcinomas are hallmarked by a rigid stroma and poor perfusion to therapeutics and nanomaterials. Hence, approaches that enhance the infiltration of magnetic nanofluids into the tumor stroma convey potentials to improve thermal tumor therapy. We studied the influence of the matrix-modulating enzymes hyaluronidase and collagenase on the uptake of magnetic nanoparticles by pancreatic cancer cells and 3D spheroids thereof, and the overall impact on magnetic heating and cell death. Furthermore, we validated the effect of hyaluronidase on magnetic hyperthermia treatment of heterotopic pancreatic cancer models in mice. Treatment of cultured cells with the enzymes caused higher uptake of magnetic nanoparticles (MNP) as compared to nontreated cells. For example, hyaluronidase caused a 28% increase in iron deposits per cell. Consequently, the thermal doses (cumulative equivalent minutes at 43 ◦C, CEM43) increased by 15–23% as compared to heat dose achieved for cells treated with magnetic hyperthermia without using enzymes. Likewise, heatinduced cell death increased. In in vivo studies, hyaluronidase-enhanced infiltration and distribution of the nanoparticles in the tumors resulted in moderate heating levels (CEM43 of 128 min as compared to 479 min) and a slower, but persistent decrease in tumor volumes over time after treatment, as compared to comparable treatment without hyaluronidase. The results indicate that hyaluronidase, in particular, improves the infiltration of magnetic nanoparticles into pancreatic cancer models, impacts their thermal treatment and cell depletion, and hence, will contribute immensely in the fight against pancreatic and many other adenocarcinomas
Local Magnetic Hyperthermia and Systemic Gemcitabine/Paclitaxel Chemotherapy Triggers Neo-Angiogenesis in Orthotopic Pancreatic Tumors without Involvement of Auto/Paracrine Tumor Cell VEGF Signaling and Hypoxia
There is a growing interest in exploring the therapeutically mediated modulation of tumor vascularization of pancreatic cancer, which is known for its poorly perfused tumor microenvironment limiting the delivery of therapeutic agents to the tumor site. Here, we assessed how magnetic hyperthermia in combination with chemotherapy selectively affects growth, the vascular compartment of tumors, and the presence of tumor cells expressing key regulators of angiogenesis. To that purpose, a orthotopic PANC-1 (fluorescent human pancreatic adenocarcinoma) mouse tumor model (Rj:Athym-Foxn1nu/nu) was used. Magnetic hyperthermia was applied alone or in combination with systemic chemotherapy (gemcitabine 50 mg per kg body weight, nab-pacitaxel 30 mg/kg body weight) on days 1 and 7 following magnetic nanoparticle application (dose: 1 mg per 100 mm3 of tumor). We used ultrasound imaging, immunohistochemistry, multi-spectral optoacoustic tomography (MSOT), and hematology to assess the biological parameters mentioned above. We found that magnetic hyperthermia in combination with gemcitabine/paclitaxel chemotherapy was able to impact tumor growth (decreased volumes and Ki67 expression) and to trigger neo-angiogenesis (increased small vessel diameter) as a result of the therapeutically mediated cell damages/stress in tumors. The applied stressors activated specific pro-angiogenic mechanisms, which differed from those seen in hypoxic conditions involving HIF-1α, since (a) treated tumors showed a significant decrease of cells expressing VEGF, CD31, HIF-1α, and neuropilin-1; and (b) the relative tumor blood volume and oxygen level remained unchanged. Neo-angiogenesis seems to be the result of the activation of cell stress pathways, like MAPK pathways (high number of pERK-expressing tumor cells). In the long term, the combination of magnetic hyperthermia and chemotherapy could potentially be applied to transiently modulate tumor angiogenesis and to improve drug accessibility during oncologic therapies of pancreatic cancer
Feasibility of the preparation of cochleate suspensions from naturally derived phosphatidylserines
IntroductionCochleates are cylindrical particles composed of dehydrated phospholipid bilayers. They are typically prepared by addition of calcium ions to vesicles composed of negatively charged phospholipids such as phosphatidylserines (PS). Due to their high physical and chemical stability, they provide an interesting alternative over other lipid-based drug formulations for example to improve oral bioavailability or to obtain a parenteral sustained-release formulation.MethodsIn the present study, the feasibility to prepare cochleate suspensions from soy lecithin-derived phosphatidylserines (SPS) was investigated and compared to the “gold standard” dioleoyl-phosphatidylserine (DOPS) cochleates. The SPS lipids covered a large range of purities between 53 and >96% and computer-controlled mixing was evaluated for the preparation of the cochleate suspensions. Electron microscopic investigations were combined with small-angle x-ray diffraction (SAXD) and Laurdan generalized polarization (GP) analysis to characterize particle structure and lipid organization.ResultsDespite some differences in particle morphology, cochleate suspensions with similar internal lipid structure as DOPS cochleates could be prepared from SPS with high headgroup purity (≥96%). Suspensions prepared from SPS with lower purity still revealed a remarkably high degree of lipid dehydration and well-organized lamellar structure. However, the particle shape was less defined, and the typical cochleate cylinders could only be detected in suspensions prepared with higher amount of calcium ions. Finally, the study proves the feasibility to prepare suspensions of cochleates or cochleate-like particles directly from a calcium salt of soy-PS by dialysis
Targeting the tumor microenvironment with fluorescence-activatable bispecific endoglin/fibroblast activation protein targeting liposomes
Liposomes are biocompatible nanocarriers with promising features for targeted delivery of contrast agents and drugs into the tumor microenvironment, for imaging and therapy purposes. Liposome-based simultaneous targeting of tumor associated fibroblast and the vasculature is promising, but the heterogeneity of tumors entails a thorough validation of suitable markers for targeted delivery. Thus, we elucidated the potential of bispecific liposomes targeting the fibroblast activation protein (FAP) on tumor stromal fibroblasts, together with endoglin which is overexpressed on tumor neovascular cells and some neoplastic cells. Fluorescence-quenched liposomes were prepared by hydrating a lipid film with a high concentration of the self-quenching near-infrared fluorescent dye, DY-676-COOH, to enable fluorescence detection exclusively upon liposomal degradation and subsequent activation. A non-quenched green fluorescent phospholipid was embedded in the liposomal surface to fluorescence-track intact liposomes. FAP- and murine endoglin-specific single chain antibody fragments were coupled to the liposomal surface, and the liposomal potentials validated in tumor cells and mice models. The bispecific liposomes revealed strong fluorescence quenching, activatability, and selectivity for target cells and delivered the encapsulated dye selectively into tumor vessels and tumor associated fibroblasts in xenografted mice models and enabled their fluorescence imaging. Furthermore, detection of swollen lymph nodes during intra-operative simulations was possible. Thus, the bispecific liposomes have potentials for targeted delivery into the tumor microenvironment and for image-guided surgery.Deutsche Forschungsgemeinschaf
Rapid target binding and cargo release of activatable liposomes bearing HER2 and FAP single-chain antibody fragments reveal potentials for image-guided delivery to tumors
Liposomes represent suitable tools for the diagnosis and treatment of a variety of diseases, including cancers. To study the role of the human epidermal growth factor receptor 2 (HER2) as target in cancer imaging and image-guided deliveries, liposomes were encapsulated with an intrinsically quenched concentration of a near-infrared fluorescent dye in their aqueous interior. This resulted in quenched liposomes (termed LipQ), that were fluorescent exclusively upon degradation, dye release, and activation. The liposomes carried an always-on green fluorescent phospholipid in the lipid layer to enable tracking of intact liposomes. Additionally, they were functionalized with single-chain antibody fragments directed to fibroblast activation protein (FAP), a marker of stromal fibroblasts of most epithelial cancers, and to HER2, whose overexpression in 20-30% of all breast cancers and many other cancer types is associated with a poor treatment outcome and relapse. We show that both monospecific (HER2-IL) and bispecific (Bi-FAP/HER2-IL) formulations are quenched and undergo HER2-dependent rapid uptake and cargo release in cultured target cells and tumor models in mice. Thereby, tumor fluorescence was retained in whole-body NIRF imaging for 32-48 h post-injection. Opposed to cell culture studies, Bi-FAP/HER2-IL-based live confocal microscopy of a high HER2-expressing tumor revealed nuclear delivery of the encapsulated dye. Thus, the liposomes have potentials for image-guided nuclear delivery of therapeutics, and also for intraoperative delineation of tumors, metastasis, and tumor margins
Analysis of the structure of nanocomposites of triglyceride platelets and DNA
DNA-complexes with platelet-like, cationically modified lipid nanoparticles (cLNPs) are studied with regard to the formation of nanocomposite structures with a sandwich-like arrangement of the DNA and platelets. For this purpose suspensions of platelet-like triglyceride nanocrystals, stabilized by a mixture of two nonionic (lecithin plus polysorbate 80 or poloxamer 188) and one cationic stabilizer dimethyldioctadecylammonium (DODAB), are used. The structure of the platelets in the native suspensions and their DNA-complexes, ranging from the sub-nano to the micron scale, is investigated with small- and wide-angle scattering (SAXS, SANS, WAXS), calorimetry, photon correlation spectroscopy, transmission electron microscopy and computer simulations. The appearance of strong, lamellarly ordered peaks in the SAXS patterns of the DNA-complexes suggests a stacked arrangement of the nanocrystals, with the DNA being partially condensed between the platelets. This finding is supported with computer simulated small-angle scattering patterns of nanocrystal stacks, which can reproduce the measured small-angle scattering patterns on an absolute scale. The influence of the choice of the nonionic stabilizers and the amount of the cationic stabilizer DODAB on the structure of the native suspensions and the inner structure of their DNA-complexes is studied, too. Using high amounts of DODAB, lecithins with saturated acyl chains and polysorbate 80 instead of poloxamer 188 produces thinner nanocrystals, and thus decreases their repeat distances in the nanocomposites. Such nanocomposites could be of interest as DNA carriers, where the triglyceride platelets protect the sandwiched DNA from degradation
The proteorhodopsins of the dinoflagellate Oxyrrhis marina: ultrastructure and localization by immunofluorescence light microscopy and immunoelectron microscopy
At least 7 proteorhodopsin sequences of Oxyrrhis marina were recently proven in bands obtained by sucrose density gradient centrifugation, and MS analyses revealed that the bands consisted almost of pure, native proteorhodopsins (Rhiel et al. 2020). The proteorhodopsin fractions, i.e., bands B2, B3, and B4 were subjected to transmission electron microscopy. Negative staining revealed that band B2 consisted most likely of monomeric/oligomeric proteorhodopsins with particle dimensions of about 6Â nm. Negative staining, freeze-fracture, and cryo-transmission electron microscopy revealed that bands B3 and B4 consisted of vesicular, sheet-like, and cup-shaped structures which all seemed to be composed of protein. Frequently, ring-like protein aggregates were registered at higher magnifications. They measured about 4Â nm in diameter with a tiny hole of 1.5Â nm in the middle. The bands B2, B3, and B4 were pooled and used to raise an antiserum. Immunoelectron microscopy resulted in intense labeling of the isolated structures. Immunofluorescence light microscopy of formaldehyde-fixed Oxyrrhis cells resulted in intense labeling of the cell periphery. Some cell internal structures became labeled, too. Immunoelectron microscopy of freeze-fractured cells revealed that most likely the membranes of the amphiesmal vesicles were labeled at the cell periphery, while the cell internal label seemed to originate from the food vacuoles
Formation of liquid crystalline phases in aqueous suspensions of platelet-like tripalmitin nanoparticles
Suspensions of platelet-like shaped tripalmitin nanocrystals stabilized by the pure lecithin DLPC and the lecithin blend S100, respectively, have been studied by small-angle x-ray scattering (SAXS) and optical observation of their birefringence at different tripalmitin (PPP) concentrations φ PPP . It could be demonstrated that the platelets of these potential drug delivery systems start to form a liquid crystalline phase already at pharmaceutically relevant concentrations φ PPP of less than 10 wt. %. The details of this liquid crystalline phase are described here for the first time. As in a previous study [A. Illing et al. , Pharm. Res.21, 592 (2004)] some platelets are found to self-assemble into lamellar stacks above a critical tripalmitin concentration φstPPP of 4 wt. %. In this study another critical concentration φlcPPP≈7 wt. % for DLPC and φlcPPP≈9 wt. % for S100 stabilized dispersions, respectively, has been observed. φlcPPP describes the transition from a phase of randomly oriented stacked lamellae and remaining non-assembled individual platelets to a phase in which the stacks and non-assembled platelets exhibit an overall preferred orientation. A careful analysis of the experimental data indicates that for concentrations above φlcPPP the stacked lamellae start to coalesce to rather small liquid crystalline domains of nematically ordered stacks. These liquid crystalline domains can be individually very differently oriented but possess an overall preferred orientation over macroscopic length scales which becomes successively more expressed when further increasing φ PPP . The lower critical concentration for the formation of liquid crystalline domains of the DLPC-stabilized suspension compared to φlcPPP of the S100-stabilized suspension can be explained by a larger aspect ratio of the corresponding tripalmitin platelets. A geometrical model based on the excluded volumes of individual platelets and stacked lamellae has been developed and successfully applied to reproduce the critical volume fractions for both, the onset of stack formation and the appearance of the liquid crystalline phase
- …