50 research outputs found

    Interlaboratory evaluation of rat hepatic gene expression changes induced by methapyrilene.

    Get PDF
    Several studies using microarrays have shown that changes in gene expression provide information about the mechanism of toxicity induced by xenobiotic agents. Nevertheless, the issue of whether gene expression profiles are reproducible across different laboratories remains to be determined. To address this question, several members of the Hepatotoxicity Working Group of the International Life Sciences Institute Health and Environmental Sciences Institute evaluated the liver gene expression profiles of rats treated with methapyrilene (MP). Animals were treated at one facility, and RNA was distributed to five different sites for gene expression analysis. A preliminary evaluation of the number of modulated genes uncovered striking differences between the five different sites. However, additional data analysis demonstrated that these differences had an effect on the absolute gene expression results but not on the outcome of the study. For all users, unsupervised algorithms showed that gene expression allows the distinction of the high dose of MP from controls and low dose. In addition, the use of a supervised analysis method (support vector machines) made it possible to correctly classify samples. In conclusion, the results show that, despite some variability, robust gene expression changes were consistent between sites. In addition, key expression changes related to the mechanism of MP-induced hepatotoxicity were identified. These results provide critical information regarding the consistency of microarray results across different laboratories and shed light on the strengths and limitations of expression profiling in drug safety analysis

    Genome-Wide Association Mapping of Quantitative Traits in Outbred Mice

    Get PDF
    Recent developments in high-density genotyping and statistical analysis methods that have enabled genome-wide association studies in humans can also be applied to outbred mouse populations. Increased recombination in outbred populations is expected to provide greater mapping resolution than traditional inbred line crosses, improving prospects for identifying the causal genes. We carried out genome-wide association mapping by using 288 mice from a commercially available outbred stock; NMRI mice were genotyped with a high-density single-nucleotide polymorphism array to map loci influencing high-density lipoprotein cholesterol, systolic blood pressure, triglyceride levels, glucose, and urinary albumin-to-creatinine ratios. We found significant associations (P < 10−5) with high-density lipoprotein cholesterol and identified Apoa2 and Scarb1, both of which have been previously reported, as candidate genes for these associations. Additional suggestive associations (P < 10−3) identified in this study were also concordant with published quantitative trait loci, suggesting that we are sampling from a limited pool of genetic diversity that has already been well characterized. These findings dampen our enthusiasm for currently available commercial outbred stocks as genetic mapping resources and highlight the need for new outbred populations with greater genetic diversity. Despite the lack of novel associations in the NMRI population, our analysis strategy illustrates the utility of methods that could be applied to genome-wide association studies in humans

    Integrated Epigenetics of Human Breast Cancer: Synoptic Investigation of Targeted Genes, MicroRNAs and Proteins upon Demethylation Treatment

    Get PDF
    The contribution of aberrant DNA methylation in silencing of tumor suppressor genes (TSGs) and microRNAs has been investigated. Since these epigenetic alterations are reversible, it became of interest to determine the effects of the 5-aza-2'-deoxycytidine (DAC) demethylation therapy in breast cancer at different molecular levels

    A microarray analysis of full depth knee cartilage of ovariectomized rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This short communication focuses the on articular cartilage and the subchondral bone, both of which play important roles in the development of osteoarthritis (OA). There are indications that estrogen-deficiency, as the post-menopausal state, accelerate the development of OA.</p> <p>Findings</p> <p>We investigated, which extracellular matrix (ECM) protein, proteases and different pro-inflammatory factors was up- or down-regulated in the knee joint tissue in response to estrogen-deficiency in rats induced by ovariectomy. These data support previous findings that several metalloproteinases (MMPs) and cysteine proteases are co-regulated with numerous collagens and proteoglycans that are important for cartilage integrity. Furthermore quite a few pro-inflammatory cytokines were regulated by estrogen deprivation.</p> <p>Conclusion</p> <p>We found multiple genes where regulated in the joint by estrogen-deficiency, many of which correspond well with our current knowledge of the pathogenesis of OA. It supports that estrogen-deficiency (e.g. OVX) may accelerate joint deterioration. However, there are also data that draw attention the need for better understanding of the synergy between proteases and tissue turnover.</p

    Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study.

    No full text
    MicroRNAs are important negative regulators of protein-coding gene expression and have been studied intensively over the past years. Several measurement platforms have been developed to determine relative miRNA abundance in biological samples using different technologies such as small RNA sequencing, reverse transcription-quantitative PCR (RT-qPCR) and (microarray) hybridization. In this study, we systematically compared 12 commercially available platforms for analysis of microRNA expression. We measured an identical set of 20 standardized positive and negative control samples, including human universal reference RNA, human brain RNA and titrations thereof, human serum samples and synthetic spikes from microRNA family members with varying homology. We developed robust quality metrics to objectively assess platform performance in terms of reproducibility, sensitivity, accuracy, specificity and concordance of differential expression. The results indicate that each method has its strengths and weaknesses, which help to guide informed selection of a quantitative microRNA gene expression platform for particular study goals

    The potential use of mutation spectra in cancer related genes in genetic toxicology: a statement of a GUM working group

    No full text
    In recent years, there has been widespread interest in the relationship between carcinogenic exposure and mutation spectra in cancer-related genes. To evaluate potential benefits and/or limitations in the use of mutation spectra in genetic toxicology, a GUM working group has been established to discuss this subject. Based on methodological possibilities and limitations, the impact of mutation spectra in the interpretation of animal experiments and in the identification of etiological agents in human cancer has been considered. With respect to experimental animals, the analyses of mutation spectra within long-term rodent carcinogenicity studies may provide some additional information on the mode of action of the respective carcinogen, however, the interpretation of results should be done carefully and only in context with other toxicological data available. Regarding human exposure, the analysis of mutation spectra in p53 or ras genes supplies information on the genotoxic properties of the respective agent. Nevertheless, on the individual level, the presence or absence of defined mutations in cancer-related genes in human tumors does not permit a definite conclusion about the causative agent

    The Virtuous Technology Cycle Concept and its Application to Next Generation Sequencing

    No full text
    External access to scientific technology plays an increasingly important role in pharmaceuticals. One advantage of accessing technology externally is to avoid the costs associated with purchase and the time required for the development of new methods; in addition, access to external scientific expertise can be beneficial. However, few conceptual frameworks exist for achieving an optimal mix of internal and external technology access. Here we describe the Virtuous Technology Cycle (VTC) concept and exemplify its application to Next-Generation Sequencing (NGS), which is seen as one of the most exciting and transformative technologies in molecular biology. Based on selected examples, we show that the VTC concept can greatly enhance the number of technologies accessed and thus significantly increase flexibility and efficiency in drug discovery. We also discuss the challenges of externally accessing NGS technologies

    A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control Consortium.

    No full text
    We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the US Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed for all examined platforms, including qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings
    corecore