12,140 research outputs found
The Geographic Distribution of US Executions
We review statistical patterns of the geographic distribution of US executions, compare them to homicides, and demonstrate extremely high degrees of concentration of executions in the modern period compared to previous historical periods. We further show that this unprecedented level of concentration has been increasing over the past 20 years. We demonstrate that it is virtually uncorrelated with factors related to homicides. Finally, we show that it corresponds to a statistical distribution associated with “self-reinforcing” processes: a power-law or exponential distribution.
These findings stand whether we look at individual counties within death-penalty states, across the 50 states of the United States, or look at the international distribution of executions across countries in recent years. The substantive conclusion from the statistical patterns observed is that these cannot be explained merely by random variation around some general average. Rather, localities start down a path, then are reinforced in their pathways. There appears to be little to no logic about why certain counties are the high-use counties, whereas the vast majority have never executed a single individual in 40 years of experience with the modern death penalty, often in spite of thousands of homicides. Our research indicates that a main determinant of whether an individual will be executed is not the crime they commit, but the jurisdiction’s experience with executing others. This is not acceptable—legally, morally, or constitutionally
A study of rotating globular clusters - the case of the old, metal-poor globular cluster NGC 4372
Aims: We present the first in-depth study of the kinematic properties and
derive the structural parameters of NGC 4372 based on the fit of a Plummer
profile and a rotating, physical model. We explore the link between internal
rotation to different cluster properties and together with similar studies of
more GCs, we put these in the context of globular cluster formation and
evolution. Methods: We present radial velocities for 131 cluster member stars
measured from high-resolution FLAMES/GIRAFFE observations. Their membership to
the GC is additionally confirmed from precise metallicity estimates. Using this
kinematic data set we build a velocity dispersion profile and a systemic
rotation curve. Additionally, we obtain an elliptical number density profile of
NGC 4372 based on optical images using a MCMC fitting algorithm. From this we
derive the cluster's half-light radius and ellipticity as r_h=3.4'+/-0.04' and
e=0.08+/-0.01. Finally, we give a physical interpretation of the observed
morphological and kinematic properties of this GC by fitting an axisymmetric,
differentially rotating, dynamical model. Results: Our results show that NGC
4372 has an unusually high ratio of rotation amplitude to velocity dispersion
(1.2 vs. 4.5 km/s) for its metallicity. This, however, puts it in line with two
other exceptional, very metal-poor GCs - M 15 and NGC 4590. We also find a mild
flattening of NGC 4372 in the direction of its rotation. Given its old age,
this suggests that the flattening is indeed caused by the systemic rotation
rather than tidal interactions with the Galaxy. Additionally, we estimate the
dynamical mass of the GC M_dyn=2.0+/-0.5 x 10^5 M_Sun based on the dynamical
model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3
M_Sun/L_Sun, representative of an old, purely stellar population.Comment: Accepted for publication in A&A, 12 pages, 14 figures, 2 table
Two-Body Random Ensembles: From Nuclear Spectra to Random Polynomials
The two-body random ensemble (TBRE) for a many-body bosonic theory is mapped
to a problem of random polynomials on the unit interval. In this way one can
understand the predominance of 0+ ground states, and analytic expressions can
be derived for distributions of lowest eigenvalues, energy gaps, density of
states and so forth. Recently studied nuclear spectroscopic properties are
addressed.Comment: 8 pages, 4 figures. To appear in Physical Review Letter
Performance Testing and Analysis of Synchronous Reluctance Motor Utilizing Dual-phase Magnetic Material
While interior permanent magnet (1PM) machines have been considered the state-of-the art for traction motors, synchronous reluctance (SynRel) motors with advanced materials can provide a competitive alternative. 1PM machines typically utilize Neodymium 1ron Boron (NdFeB) permanent magnets, which pose an issue in terms of price, sustainability, demagnetization at higher operating temperatures, and uncontrolled generation. On the other hand, SynRel machines do not contain any magnets and are free from these issues. However, the absence of magnets as well the presence of bridges and centerposts limit the flux-weakening capability of a SynRel machine and limit the achievable constant power speed ratio (CPSR) without having to significantly oversize the machine and/or the power converter. 1n this paper, a new material referred to as the dual-phase magnetic material where nonmagnetic regions can be selectively introduced within each lamination will be evaluated for SynRel designs. The dual-phase feature of this material enables non-magnetic bridges and posts, eliminating one of the key limitations of the SynRel designs in terms of torque density and flux-weakening. This paper will present, the design, analysis and test results of an advanced proof-of-concept SynRel design utilizing dual-phase material with traction applications as the ultimate target application
Modulational Instability in Equations of KdV Type
It is a matter of experience that nonlinear waves in dispersive media,
propagating primarily in one direction, may appear periodic in small space and
time scales, but their characteristics --- amplitude, phase, wave number, etc.
--- slowly vary in large space and time scales. In the 1970's, Whitham
developed an asymptotic (WKB) method to study the effects of small
"modulations" on nonlinear periodic wave trains. Since then, there has been a
great deal of work aiming at rigorously justifying the predictions from
Whitham's formal theory. We discuss recent advances in the mathematical
understanding of the dynamics, in particular, the instability of slowly
modulated wave trains for nonlinear dispersive equations of KdV type.Comment: 40 pages. To appear in upcoming title in Lecture Notes in Physic
The Calculation of Vacuum Properties from the Global Color Symmetry Model
A modified method for calculating the non-perturbative quark vacuum
condensates from the global color symmetry model is derived. Within this
approach it is shown that the vacuum condensates are free of ultraviolet
divergence which is different from previous studies. As a special, the
two-quark condensate and the mixed quark-gluon condensate are calculated. A
comparision with the results of the other nonperturbative QCD approaches is
given.Comment: 17 page
A probabilistic analysis of argument cogency
This paper offers a probabilistic treatment of the conditions for argument cogency as endorsed in informal logic: acceptability, relevance, and sufficiency. Treating a natural language argument as a reason-claim-complex, our analysis identifies content features of defeasible argument on which the RSA conditions depend, namely: change in the commitment to the reason, the reason’s sensitivity and selectivity to the claim, one’s prior commitment to the claim, and the contextually determined thresholds of acceptability for reasons and for claims. Results contrast with, and may indeed serve to correct, the informal understanding and applications of the RSA criteria concerning their conceptual dependence, their function as update-thresholds, and their status as obligatory rather than permissive norms, but also show how these formal and informal normative approachs can in fact align
Mesons as qbar-q Bound States from Euclidean 2-Point Correlators in the Bethe-Salpeter Approach
We investigate the 2-point correlation function for the vector current. The
gluons provide dressings for both the quark self energy as well as the vector
vertex function, which are described consistently by the rainbow
Dyson-Schwinger equation and the inhomogeneous ladder Bethe-Salpeter equation.
The form of the gluon propagator at low momenta is modeled by a 2-parameter
ansatz fitting the weak pion decay constant. The quarks are confined in the
sense that the quark propagator does not have a pole at timelike momenta. We
determine the ground state mass in the vector channel from the Euclidean time
Fourier transform of the correlator, which has an exponential falloff at large
times. The ground state mass lies around 590 MeV and is almost independent of
the model form for the gluon propagator. This method allows us to stay in
Euclidean space and to avoid analytic continuation of the quark or gluon
propagators into the timelike region.Comment: 21 pages (REVTEX), 8 Postscript figure
Trade in the balance: reconciling trade and climate policy: report of the Working Group on Trade, Investment, and Climate Policy
This repository item contains a report published by the Working Group on Trade, Investment, and Climate Policy at The Frederick S. Pardee Center for the Study of the Longer-Range Future at Boston University, and the Global Economic Governance Initiative at Boston University.This report outlines the general tensions between the trade and investment regime and climate policy, and outlines a framework toward making trade and investment rules more climate friendly. Members of the working group have contributed short pieces addressing a range of issues related to the intersection of trade and climate policy. The first two are by natural scientists. Anthony Janetos discusses the need to address the effects of international trade on efforts to limit the increase in global annual temperature to no more than 2oC over preindustrial levels. James J. Corbett examines the failure of the Trans Pacific Partnership (TPP) and the Transatlantic Trade and Investment Partnership (TTIP) to adequately address the environmental implications of shipping and maritime transport. The next two pieces are by economists who examine economic aspects of the trade-climate linkage. Irene Monasterolo and Marco Raberto discuss the potential impacts of including fossil fuel subsidies reduction under the TTIP. Frank Ackerman explores the economic costs of efforts to promote convergence of regulatory standards between the United States and the European Union under the TTIP. The following two contributions are by legal scholars. Brooke Güven and Lise Johnson explore the potential for international investment treaties to redirect investment flows to support climate change mitigation and adaptation, particularly with regard to China and India. Matt Porterfield provides an overview of the ways in which both existing and proposed trade and investment agreements could have either “climate positive” or “climate negative” effects on mitigation policies. The final article is by Tao Hu, a former WTO trade and environment expert advisor for China and currently at the World Wildlife Fund, arguing that the definition of environmental goods and services’ under the WTO negotiations needs to be expanded to better incorporate climate change
- …
