55 research outputs found

    Organic waste products in agriculture ‐ monitoring the waste constituents phthalate esters in soil‐crop system by gas chromatography and ion trap tandem mass spectrometry

    Get PDF
    A method is described for monitoring phthalate esters in organic waste products, agricultural soil and crops. Solvent extraction, Ultra Turrax homogenisation and sonification were used to isolate the compounds from the sample matrices. Solid phase extraction was applied for purification, and gas chromatography with tandem mass spectrometry – for identification. With the method, six phthalate esters were determined in different matrices. The detection limits were in the range of 1 to 10 μg kg–1 wet weight, except for DEHP, which had a detection limit approaching 100 μg kg–1 wet weight. Repeatabilities were from 5 to 20 % relative standard deviation. Recoveries were from 6 to 100 %, depending on the compound analysed. However, except for the polar phthalates DMP and DEP, the recoveries were above 70 %. The method feasibility was demonstrated in an investigation of the occurrence of phthalate esters in barley, rape, carrots, agricultural soil, aerobic and anaerobic sludge, household compost and pig manure. Organinių atliekų produktai žemės ūkyje – atliekų sudedamosios dalies phthale esterių sistemoje dirvožemis–pasėliai monitoringas chromatografijos ir jonų porų išdėstytos masės spektrometrijos būdu Santrauka Aprašytas metodas yra skirtas phthalate esterių monitoringui organinių atliekų produktuose, žemės ūkio dirvožemyje ir pasėliuose. Junginiams nuo bandinio terpės atskirti buvo taikyta tirpiklio ekstrakcija, Ultra Turrax homogenizacija ir sonifikacija. Kietosios fazės ekstrakcija buvo taikyta valymui, o identifikacijai – dujų chromatografija su išdėstytos masės spektrometru. Šiuo metodu šešių rūšių phthalate esteriai buvo nustatyti įvairiose terpėse. Identifikacijos ribos buvo 1–10 µg kg–1 šlapiosios masės, išskyrus DEHP atveju, kurio nustatymo riba artima 100 µg kg–1 šlapiosios masės. Pakartojimai skyrėsi nuo reliatyvaus standartinio 5–20 %. Atkūrimas buvo 6–100 %, atsižvelgiant į junginių suskaidymą. Tačiau, išskyrus polinių phthalate DMP ir DEP atvejus, atkūrimas buvo 70 %. Metodo pagrįstumas buvo pademonstruotas, atliekant phthalate tyrinėjimus miežiuose, rapsuose, morkose, žemės ūkio dirvožemyje, aerobiniame ir anaerobiniame dumble, namų ūkio komposte ir kiaulių mėšle. Reikšminiai žodžiai: phthalate esteriai, nutekamųjų vandenų dumblas, išdėstytos masės spektrometras, jonų poros, žemės ūkis. Продукты органических отходов в сельском хозяйстве. Мониторинг составной части отходов – эфира phthalate в системе почва–посевы способом хроматографии и спектрометрии разложенной массы пор ионов Резюме Описанный метод предназначен для мониторинга эфира Phthalate в органических отходах продуктов сельского хозяйства, почве и посевах. Для отделения соединений от опытной среды была применена экстракция растворителя, гомогенизация и сонификация Ultra Turrax. Экстракция твердой фазы была применена для очистки, а для идентификации – газовая хроматография со спектрометром разложенной массы. С помощью этого метода эфир Phthalate шести сортов был обнаружен в разных средах. Граница идентификации составляла 1–10 µг кг–1 мокрого веса, кроме случая DEHP, граница которого близка к 100 µг кг–1 мокрого веса. Повторы отклонялись от релятивного стандарта на 5–20 %. Восстановление составило 6–100 % с учетом дробления соединений. Однако, кроме случаев полярных Phthalate DMP и DEP, восстановление составляло 70 %. Обоснованность метода была продемонстрирована исследованием эфира Phthalate в ячмене, рапсе, моркови, сельскохозяйственной почве, аэробинамическом и анаэробинамическом иле, компосте из бытовых отходов и свином навозе. Ключевые слова: эфир Phthalate, ил сточных вод, спектрометр разложенной массы, поры ионов, сельское хозяйство. First Published Online: 14 Oct 201

    Sulphonated aromatic pollutants: Limits of microbial degradability and potential of phytoremediation

    Get PDF
    Many synthetic sulphonated aromatic compounds are used as starting material to produce dyes and pigments, or are released as by-products in the effluents of the textile and dye industry. A large number of these chemicals are poorly biodegradable and cannot be eliminated by classical wastewater treatment plants. To limit the impact of these pollutants on the environment, new processes, based on the use of higher plants (constructed wetlands or hydroponic systems), are under development. Detergents and surfactants are essential for both industrial and domestic applications, the most important family being the alkylbenzene sulphonates. Originally, the alkyl side chains were branched and thus recalcitrant to biodegradation. Therefore, they have been replaced by linear alkylbenzene sulphonates. Although more acceptable, present formulations still have adverse environmental and toxic effects. In this context, phytoremediation appears to be a promising approach to remove these compounds from contaminated soils and water

    Natural formation and degradation of chloroacetic acids and volatile organochlorines in forest soil: challenges to understanding

    Get PDF
    Goal, Scope and Background. The anthropogenic environmental emissions of chloroacetic acids and volatile organochlorines have been under scrutiny in recent years because the two compound groups are suspected to contribute to forest dieback and stratospheric ozone destruction, respectively. The two organochlorine groups are linked because the atmospheric photochemical oxidation of some volatile organochlorine compounds is one source of phytotoxic chloroacetic acids in the environment. Moreover, both groups are produced in higher amounts by natural chlorination of organic matter, e.g. by soil microorganisms, marine macroalgae and salt lake bacteria, and show similar metabolism pathways. Elucidating the origin and fate of these organohalogens is necessary to implement actions to counteract environmental problems caused by these compounds. Main Features. While the anthropogenic sources of chloroacetic acids and volatile organochlorines are relatively well-known and within human control, knowledge of relevant natural processes is scarce and fragmented. This article reviews current knowledge on natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soils, with particular emphasis on processes in the rhizosphere, and discusses future studies necessary to understand the role of forest soils in the formation and degradation of these compounds. Results and Discussion. Reviewing the present knowledge of the natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soil has revealed gaps in knowledge regarding the actual mechanisms behind these processes. In particular, there remains insufficient quantification of reliable budgets and rates of formation and degradation of chloroacetic acids and volatile organochlorines in forest soil (both biotic and abiotic processes) to evaluate the strength of forest ecosystems regarding the emission and uptake of chloroacetic acids and volatile organochlorines, both on a regional scale and on a global scale. Conclusion. It is concluded that the overall role of forest soil as a source and/or sink for chloroacetic acids and volatile organochlorines is still unclear; the available laboratory and field data reveal only bits of the puzzle. Detailed knowledge of the natural degradation and formation processes in forest soil is important to evaluate the strength of forest ecosystems for the emission and uptake of chloroacetic acids and volatile organochlorines, both on a regional scale and on a global scale. Recommendation and Perspective. As the natural formation and degradation processes of chloroacetic acids and volatile organochlorines in forest soil can be influenced by human activities, evaluation of the extent of this influence will help to identify what future actions are needed to reduce human influences and thus prevent further damage to the environment and to human health caused by these compounds
    corecore