17 research outputs found

    Pharmacokinetics of Etravirine Combined with Atazanavir/Ritonavir and a Nucleoside Reverse Transcriptase Inhibitor in Antiretroviral Treatment-Experienced, HIV-1-Infected Patients

    No full text
    Objectives. TEACH (NCT00896051) was a randomized, open-label, two-arm Phase II trial to investigate the pharmacokinetic interaction between etravirine and atazanavir/ritonavir and safety and efficacy in treatment-experienced, HIV-1-infected patients. Methods. After a two-week lead-in of two nucleoside reverse transcriptase inhibitors (NRTIs) and atazanavir/ritonavir 300/100 mg, 44 patients received etravirine 200 mg bid with one NRTI, plus atazanavir/ritonavir 300/100 mg or 400/100 mg qd (n=22 each group) over 48 weeks. Results. At steady-state etravirine with atazanavir/ritonavir 300/100 mg qd or 400/100 mg qd decreased atazanavir Cmin⁡ by 18% and 9%, respectively, with no change in AUC24 h or Cmax⁡ versus atazanavir/ritonavir 300/100 mg qd alone (Day −1). Etravirine AUC12 h was 24% higher and 16% lower with atazanavir/ritonavir 300/100 or 400/100 mg qd, respectively, versus historical controls. At Week 48, no significant differences were seen between the atazanavir/ritonavir groups in discontinuations due to adverse events (9.1% each group) and other safety parameters, the proportion of patients with viral load <50 copies/mL (intent-to-treat population, noncompleter = failure) (50.0%, atazanavir/ritonavir 300/100 mg qd versus 45.5%, 400/100 mg qd), and virologic failures (31.8% versus 27.3%, resp.). Conclusions. Etravirine 200 mg bid can be combined with atazanavir/ritonavir 300/100 mg qd and an NRTI in HIV-1-infected, treatment-experienced patients without dose adjustment

    Time frame and justice motive: Future perspective moderates the adaptive function of general belief in a just world.

    Get PDF
    Background: The human ability to envision the future, that is, to take a future perspective (FP), plays a key role in the justice motive and its function in transcending disadvantages and misfortunes. The present research investigated whether individual (Study 1) and situational (Study 2) differences in FP moderated the association of general belief in a just world (GBJW) with psychological resilience. Methodology/Principal Findings: We investigated FP, GBJW, and resilience in samples of adolescents (n = 223) and disaster survivors (n = 218) in China. In Study 1, adolescents revealed stronger GBJW than PBJW, and GBJW uniquely predicted resilience in the daily lives of those with high FP (but not those with low FP). In Study 2, natural priming of FP (vs. no FP) facilitated the association of GBJW with resilience after disaster. Conclusions/Significance: Supporting predictions, participants endorsed GBJW more strongly than PBJW. Further, GBJW interacted with FP in both studies, such that there was an association between GBJW and resilience at high but not low levels of FP. The results corroborate recent findings suggesting that GBJW may be more psychologically adaptive than PBJW among some populations. They also confirm that focusing on the future is an important aspect of the adaptive function of just-world beliefs

    Acute HIV-1 infection viremia associate with rebound upon treatment interruption

    No full text
    Background: Analytic treatment interruption (ATI) studies evaluate strategies to potentially induce remission in people living with HIV-1 but are often limited in sample size. We combined data from four studies that tested three interventions (vorinostat/hydroxychloroquine/maraviroc before ATI, Ad26/MVA vaccination before ATI, and VRC01 antibody infusion during ATI). Methods: The statistical validity of combining data from these participants was evaluated. Eleven variables, including HIV-1 viral load at diagnosis, Fiebig stage, and CD4+ T cell count were evaluated using pairwise correlations, statistical tests, and Cox survival models. Findings: Participants had homogeneous demographic and clinical characteristics. Because an antiviral effect was seen in participants who received VRC01 infusion post-ATI, these participants were excluded from the analysis, permitting a pooled analysis of 53 participants. Time to viral rebound was significantly associated with variables measured at the beginning of infection: pre-antiretroviral therapy (ART) viral load (HR = 1.34, p = 0.022), time to viral suppression post-ART initiation (HR = 1.07, p < 0.001), and area under the viral load curve (HR = 1.34, p = 0.026). Conclusions: We show that higher viral loads in acute HIV-1 infection were associated with faster viral rebound, demonstrating that the initial stage of HIV-1 infection before ART initiation has a strong impact on viral rebound post-ATI years later. Funding: This work was supported by a cooperative agreement between the Henry M. Jackson Foundation for the Advancement of Military Medicine and the US Department of the Army (W81XWH-18-2-0040). This research was funded, in part, by the US National Institute of Allergy and Infectious Diseases (AAI20052001) and the I4C Martin Delaney Collaboratory (5UM1AI126603-05)

    Safety and immunogenicity of Ad26 and MVA vaccines in acutely treated HIV and effect on viral rebound after antiretroviral therapy interruption

    No full text
    We administered Ad26, modified vaccinia Ankara vectors containing mosaic HIV-1 antigens or placebo in 26 individuals who initiated antiretroviral therapy during acute human immunodeficiency virus infection as an exploratory study to determine the safety and duration of viremic control after treatment interruption. The vaccine was safe and generated robust immune responses, but delayed time to viral rebound compared to that in placebo recipients by only several days and did not lead to viremic control after treatment interruption (clinical trial NCT02919306)

    Evaluation of a mosaic HIV-1 vaccine in a multicentre, randomised, double-blind, placebo-controlled, phase 1/2a clinical trial (APPROACH) and in rhesus monkeys (NHP 13-19).

    No full text
    BACKGROUND: More than 1·8 million new cases of HIV-1 infection were diagnosed worldwide in 2016. No licensed prophylactic HIV-1 vaccine exists. A major limitation to date has been the lack of direct comparability between clinical trials and preclinical studies. We aimed to evaluate mosaic adenovirus serotype 26 (Ad26)-based HIV-1 vaccine candidates in parallel studies in humans and rhesus monkeys to define the optimal vaccine regimen to advance into clinical efficacy trials. METHODS: We conducted a multicentre, randomised, double-blind, placebo-controlled phase 1/2a trial (APPROACH). Participants were recruited from 12 clinics in east Africa, South Africa, Thailand, and the USA. We included healthy, HIV-1-uninfected participants (aged 18-50 years) who were considered at low risk for HIV-1 infection. We randomly assigned participants to one of eight study groups, stratified by region. Participants and investigators were blinded to the treatment allocation throughout the study. We primed participants at weeks 0 and 12 with Ad26.Mos.HIV (5 × 1010 viral particles per 0·5 mL) expressing mosaic HIV-1 envelope (Env)/Gag/Pol antigens and gave boosters at weeks 24 and 48 with Ad26.Mos.HIV or modified vaccinia Ankara (MVA; 108 plaque-forming units per 0·5 mL) vectors with or without high-dose (250 μg) or low-dose (50 μg) aluminium adjuvanted clade C Env gp140 protein. Those in the control group received 0·9% saline. All study interventions were administered intramuscularly. Primary endpoints were safety and tolerability of the vaccine regimens and Env-specific binding antibody responses at week 28. Safety and immunogenicity were also assessed at week 52. All participants who received at least one vaccine dose or placebo were included in the safety analysis; immunogenicity was analysed using the per-protocol population. We also did a parallel study in rhesus monkeys (NHP 13-19) to assess the immunogenicity and protective efficacy of these vaccine regimens against a series of six repetitive, heterologous, intrarectal challenges with a rhesus peripheral blood mononuclear cell-derived challenge stock of simian-human immunodeficiency virus (SHIV-SF162P3). The APPROACH trial is registered with ClinicalTrials.gov, number NCT02315703. FINDINGS: Between Feb 24, 2015, and Oct 16, 2015, we randomly assigned 393 participants to receive at least one dose of study vaccine or placebo in the APPROACH trial. All vaccine regimens demonstrated favourable safety and tolerability. The most commonly reported solicited local adverse event was mild-to-moderate pain at the injection site (varying from 69% to 88% between the different active groups vs 49% in the placebo group). Five (1%) of 393 participants reported at least one grade 3 adverse event considered related to the vaccines: abdominal pain and diarrhoea (in the same participant), increased aspartate aminotransferase, postural dizziness, back pain, and malaise. The mosaic Ad26/Ad26 plus high-dose gp140 boost vaccine was the most immunogenic in humans; it elicited Env-specific binding antibody responses (100%) and antibody-dependent cellular phagocytosis responses (80%) at week 52, and T-cell responses at week 50 (83%). We also randomly assigned 72 rhesus monkeys to receive one of five different vaccine regimens or placebo in the NHP 13-19 study. Ad26/Ad26 plus gp140 boost induced similar magnitude, durability, and phenotype of immune responses in rhesus monkeys as compared with humans and afforded 67% protection against acquisition of SHIV-SF162P3 infection (two-sided Fisher's exact test p=0·007). Env-specific ELISA and enzyme-linked immunospot assay responses were the principal immune correlates of protection against SHIV challenge in monkeys. INTERPRETATION: The mosaic Ad26/Ad26 plus gp140 HIV-1 vaccine induced comparable and robust immune responses in humans and rhesus monkeys, and it provided significant protection against repetitive heterologous SHIV challenges in rhesus monkeys. This vaccine concept is currently being evaluated in a phase 2b clinical efficacy study in sub-Saharan Africa (NCT03060629). FUNDING: Janssen Vaccines & Prevention BV, National Institutes of Health, Ragon Institute of MGH, MIT and Harvard, Henry M Jackson Foundation for the Advancement of Military Medicine, US Department of Defense, and International AIDS Vaccine Initiative
    corecore