1,703 research outputs found
Research on neighborhoods in European cities
This chapter provides an overview of European neighborhood studies of crime, victimization, and delinquency that were explicitly guided or inspired by social disorganization theory. Although the origin of social disorganization theory lies in the United States with a long-lasting tradition in urban research, considerable attention has also been given to this perspective in Europe, as well as in other parts of the world. In Europe, a long research tradition of studies on the effects of city or neighborhood characteristics on crime-related outcomes existed before the social disorganization perspective emerged in the United States. Recently, several studies have been conducted in European cities that report findings that differ from those usually found in an American context. Therefore, knowledge about these European studies is paramount for our insights on the role of the neighborhood in crime and criminal behavior.</p
Revisiting the Higgs Mass and Dark Matter in the CMSSM
Taking into account the available accelerator and astrophysical constraints,
the mass of the lightest neutral Higgs boson h in the minimal supersymmetric
extension of the Standard Model with universal soft supersymmetry-breaking
masses (CMSSM) has been estimated to lie between 114 and ~ 130 GeV. Recent data
from ATLAS and CMS hint that m_h ~ 125 GeV, though m_h ~ 119 GeV may still be a
possibility. Here we study the consequences for the parameters of the CMSSM and
direct dark matter detection if the Higgs hint is confirmed, focusing on the
strips in the (m_1/2, m_0) planes for different tan beta and A_0 where the
relic density of the lightest neutralino chi falls within the range of the
cosmological cold dark matter density allowed by WMAP and other experiments. We
find that if m_h ~ 125 GeV focus-point strips would be disfavoured, as would
the low-tan beta stau-chi and stop -chi coannihilation strips, whereas the
stau-chi coannihilation strip at large tan beta and A_0 > 0 would be favoured,
together with its extension to a funnel where rapid annihilation via
direct-channel H/A poles dominates. On the other hand, if m_h ~ 119 GeV more
options would be open. We give parametrizations of WMAP strips with large tan
beta and fixed A_0/m_0 > 0 that include portions compatible with m_h = 125 GeV,
and present predictions for spin-independent elastic dark matter scattering
along these strips. These are generally low for models compatible with m_h =
125 GeV, whereas the XENON100 experiment already excludes some portions of
strips where m_h is smaller.Comment: 24 pages, 9 figure
Squark anti-squark pair production at the LHC: the electroweak contribution
We present the complete NLO electroweak contribution of
to the production of diagonal
squark--anti-squark pairs in proton--proton collisions. Compared to the
lowest-order electroweak terms, the
NLO contributions are also significant. We discuss the LO and NLO electroweak
effects in cross sections and distributions at the LHC for the production of
squarks different from top squarks, in various supersymmetric benchmark
scenarios.Comment: 38 pages, 21 figures. Replaced with the version published in JHE
NLO electroweak contributions to gluino pair production at hadron colliders
We calculate the full corrections to the
process of gluino pair production at hadron colliders in the framework of the
real MSSM. We show that these contributions can be neglected at the LHC
performing a scan over a wide region of the parameter space. The impact of
these corrections in the parameter range investigated at the Tevatron is small.Comment: 26 pages, 12 figure
Phase Transition Study of Superconducting Microstructures
The presented results are part of a feasibility study of superheated
superconducting microstructure detectors. The microstructures (dots) were
fabricated using thin film patterning techniques with diameters ranging from
m up to m and thickness of m. We used arrays and single
dots to study the dynamics of the superheating and supercooling phase
transitions in a magnetic field parallel to the dot surface. The phase transi-
tions were produced by either varying the applied magnetic field strength at a
constant temperature or changing the bath temperature at a constant field.
Preliminary results on the dynamics of the phase transitions of arrays and
single indium dots will be reported.Comment: 7pages in LaTex format, five figures available upon request by
[email protected], preprint Bu-He 93/
Using a cognitive architecture to examine what develops
Different theories of development propose alternative mechanisms by which development occurs. Cognitive architectures can be used to examine the influence of each proposed mechanism of development while keeping all other mechanisms constant. An ACT-R computational model that matched adult behavior in solving a 21-block pyramid puzzle was created. The model was modified in three ways that corresponded to mechanisms of development proposed by developmental theories. The results showed that all the modifications (two of capacity and one of strategy choice) could approximate the behavior of 7-year-old children on the task. The strategy-choice modification provided the closest match on the two central measures of task behavior (time taken per layer, r = .99, and construction attempts per layer, r = .73). Modifying cognitive architectures is a fruitful way to compare and test potential developmental mechanisms, and can therefore help in specifying “what develops.
WMAP-Compliant Benchmark Surfaces for MSSM Higgs Bosons
We explore `benchmark surfaces' suitable for studying the phenomenology of
Higgs bosons in the minimal supersymmetric extension of the Standard Model
(MSSM), which are chosen so that the supersymmetric relic density is generally
compatible with the range of cold dark matter density preferred by WMAP and
other observations. These benchmark surfaces are specified assuming that
gaugino masses m_{1/2}, soft trilinear supersymmetry-breaking parameters A_0
and the soft supersymmetry-breaking contributions m_0 to the squark and slepton
masses are universal, but not those associated with the Higgs multiplets (the
NUHM framework). The benchmark surfaces may be presented as M_A-tan_beta planes
with fixed or systematically varying values of the other NUHM parameters, such
as m_0, m_{1/2}, A_0 and the Higgs mixing parameter mu. We discuss the
prospects for probing experimentally these benchmark surfaces at the Tevatron
collider, the LHC, the ILC, in B physics and in direct dark-matter detection
experiments. An Appendix documents developments in the FeynHiggs code that
enable the user to explore for her/himself the WMAP-compliant benchmark
surfaces.Comment: Minor corrections, references added. 43 pages, 10 figures. Version to
appear in JHE
Nonequilibrium stabilization of charge states in double quantum dots
We analyze the decoherence of charge states in double quantum dots due to
cotunneling. The system is treated using the Bloch-Redfield generalized master
equation for the Schrieffer-Wolff transformed Hamiltonian. We show that the
decoherence, characterized through a relaxation and a dephasing time
, can be controlled through the external voltage and that the
optimum point, where these times are maximum, is not necessarily in
equilibrium. We outline the mechanism of this nonequilibrium-induced
enhancement of lifetime and coherence. We discuss the relevance of our results
for recent charge qubit experiments.Comment: 5 pages, 5 figure
On the detectability of the CMSSM light Higgs boson at the Tevatron
We examine the prospects of detecting the light Higgs h^0 of the Constrained
MSSM at the Tevatron. To this end we explore the CMSSM parameter space with
\mu>0, using a Markov Chain Monte Carlo technique, and apply all relevant
collider and cosmological constraints including their uncertainties, as well as
those of the Standard Model parameters. Taking 50 GeV < m_{1/2}, m_0 < 4 TeV,
|A_0| < 7 TeV and 2 < tan(beta) < 62 as flat priors and using the formalism of
Bayesian statistics we find that the 68% posterior probability region for the
h^0 mass lies between 115.4 GeV and 120.4 GeV. Otherwise, h^0 is very similar
to the Standard Model Higgs boson. Nevertheless, we point out some enhancements
in its couplings to bottom and tau pairs, ranging from a few per cent in most
of the CMSSM parameter space, up to several per cent in the favored region of
tan(beta)\sim 50 and the pseudoscalar Higgs mass of m_A\lsim 1 TeV. We also
find that the other Higgs bosons are typically heavier, although not
necessarily much heavier. For values of the h^0 mass within the 95% probability
range as determined by our analysis, a 95% CL exclusion limit can be set with
about 2/fb of integrated luminosity per experiment, or else with 4/fb (12/fb) a
3 sigma evidence (5 sigma discovery) will be guaranteed. We also emphasize that
the alternative statistical measure of the mean quality-of-fit favors a
somewhat lower Higgs mass range; this implies even more optimistic prospects
for the CMSSM light Higgs search than the more conservative Bayesian approach.
In conclusion, for the above CMSSM parameter ranges, especially m_0, either
some evidence will be found at the Tevatron for the light Higgs boson or, at a
high confidence level, the CMSSM will be ruled out.Comment: JHEP versio
Nematic Films and Radially Anisotropic Delaunay Surfaces
We develop a theory of axisymmetric surfaces minimizing a combination of
surface tension and nematic elastic energies which may be suitable for
describing simple film and bubble shapes. As a function of the elastic constant
and the applied tension on the bubbles, we find the analogues of the unduloid,
sphere, and nodoid in addition to other new surfaces.Comment: 15 pages, 18 figure
- …
