57 research outputs found

    Deriving Earth science products from SSM/I

    Get PDF
    There are 3 components to this project. The first is the production of a quality controlled Level-1 data product for the Special Sensor Microwave Imager (SSM/I). Second is the generation of research quality ocean products. The 3rd component is studying the feasibility of obtaining both wind speed and wind direction from satellite microwave radiometers. The status of the three studies are discussed briefly. Time series of the SSM/I physical temperatures, receiver gains, and noise figures were studied in order to access the stability and integrity of the sensor data. A physically based retrieval algorithm was used to compute ocean products from the SSM/I Level-1 data. It simultaneously finds the near surface wind speed, the columnar water vapor, and the columnar liquid water. A wind direction signal was found in the SSM/I brightness temperature

    A Well-Calibrated Ocean Algorithm for Special Sensor Microwave/Imager

    Get PDF
    I describe an algorithm for retrieving geophysical parameters over the ocean from special sensor microwave/imager (SSM/I) observations. This algorithm is based on a model for the brightness temperature T(sub B) of the ocean and intervening atmosphere. The retrieved parameters are the near-surface wind speed W, the columnar water vapor V, the columnar cloud liquid water L, and the line-of-sight wind W(sub LS). I restrict my analysis to ocean scenes free of rain, and when the algorithm detects rain, the retrievals are discarded. The model and algorithm are precisely calibrated using a very large in situ database containing 37,650 SSM/I overpasses of buoys and 35,108 overpasses of radiosonde sites. A detailed error analysis indicates that the T(sub B) model rms accuracy is between 0.5 and 1 K and that the rms retrieval accuracies for wind, vapor, and cloud are 0.9 m/s, 1.2 mm, and 0.025 mm, respectively. The error in specifying the cloud temperature will introduce an additional 10% error in the cloud water retrieval. The spatial resolution for these accuracies is 50 km. The systematic errors in the retrievals are smaller than the rms errors, being about 0.3 m/s, 0.6 mm, and 0.005 mm for W, V, and L, respectively. The one exception is the systematic error in wind speed of -1.0 m/s that occurs for observations within +/-20 deg of upwind. The inclusion of the line-of-sight wind W(sub LS) in the retrieval significantly reduces the error in wind speed due to wind direction variations. The wind error for upwind observations is reduced from -3.0 to -1.0 m/s. Finally, I find a small signal in the 19-GHz, horizontal polarization (h(sub pol) T(sub B) residual DeltaT(sub BH) that is related to the effective air pressure of the water vapor profile. This information may be of some use in specifying the vertical distribution of water vapor

    Deriving earth science products from SSM/I

    Get PDF
    A few of the major accomplishments during the second phase include: (1) all three Special Sensor Microwave Imagers (SSM/I's: F08, F10, and F11) have been cross-calibrated; (2) a very large, quality-controlled, collocated SSM/I and radiosonde data set has been produced; (3) the SSM/I-radiosonde and SSM/I-buoy data sets have been used to calibrate the SSM/I ocean retrieval algorithm; (4) ocean products have been produced for both F10 and F11 SSM/I for 1991-1993; (5) the SSM/I-buoy data set was used to better determine the variation of the ocean T(sub B) with wind direction; and (6) it was demonstrated that under high wind conditions, wind direction information can be obtained from individual SSM/I observations

    Production of SSM/I data sets

    Get PDF
    This Final Report is a summary of the work that was performed under Contract NAS8-38075 between NASA Marshall Space Flight Center and Remote Sensing Systems from September 1989 to September 1992. The primary accomplishment was the delivery of Special Sensor Microwave/Imager (SSM/I) data tapes containing sensor and geophysical products. In all, 515 tapes (80 gigabytes) were delivered. These tapes contained the F08 SSM/I data for the period from July 1988 through December 1991 and the F10 SSM/I data for the period from December 1990 through December 1991. For the F08 SSM/I, a data inventory was compiled and an engineering assessment was done. Ephemeris tables for the F08 and F10 spacecrafts were computed. Scientific studies on the oceanic wind vector and water vapor field were published, and color atlases of monthly ocean products were produced. This investigation was part of NASA's WETNET program

    SSM/I and ECMWF Wind Vector Comparison

    Get PDF
    Wentz was the first to convincingly show that satellite microwave radiometers have the potential to measure the oceanic wind vector. The most compelling evidence for this conclusion was the monthly wind vector maps derived solely from a statistical analysis of Special Sensor Microwave Imager (SSM/I) observations. In a qualitative sense, these maps clearly showed the general circulation over the world's oceans. In this report we take a closer look at the SSM/I monthly wind vector maps and compare them to European Center for Medium-Range Weather Forecasts (ECMWF) wind fields. This investigation leads both to an empirical comparison of SSM/I calculated wind vectors with ECMWF wind vectors, and to an examination of possible reasons that the SSM/I calculated wind vector direction would be inherently more reliable at some locations than others

    SSM/I Rain Retrievals Within a Unified All-Weather Ocean Algorithm

    Get PDF
    A new method for the physical retrieval of rain rates from satellite microwave radiometers is presented and compared to two other rainfall climatologies derived from satellites. The method is part of a unified ocean parameter retrieval algorithm that is based on the fundamental principles of radiative transfer. The algorithm simultaneously finds near-surface wind speed W, columnar water vapor V, columnar cloud liquid water L, rain rate R, and effective radiating temperature T(sub U) for the upwelling radiation. The performance of the algorithm in the absence of rain is discussed in Wentz, and this paper focuses on the rain component of the algorithm. A particular strength of the unified algorithm is its ability to 'orthogonalize' the retrievals so that there is minimum cross-talk between the retrieved parameters. For example, comparisons of the retrieved water vapor with radiosonde observations show that there is very little correlation between the water vapor retrieval error and rain rate. For rain rates from 1 to 15 mm/h, the rms difference between the retrieved water vapor and the radiosonde value is 5 mm. A novel feature of the rain retrieval method is a beamfilling correction that is based upon the ratio of the retrieved liquid water absorption coefficients at 37 GHz and 19.35 GHz. This ratio decreases by about 40% when heavy and light rain co-exist within the SSM/I footprint as compared to the case of uniform rain. This correction has the effect of increasing the rain rate when the spectral ratio of the absorption coefficients is small. Even with this beamfilling correction, tropical rainfall is still unrealistically low when the freezing level in the tropics (approx. 5 km) is used to specify the rain layer thickness. We restore realism by reducing the assumed averaged tropical rain layer thickness to 3 km, thereby accounting for the existence of warm rain processes in which the rain layer does not extend to the freezing level. Global rain rates are produced for the 1991 through 1994 period from observations taken by microwave radiometers (SSM/I) that are aboard two polar-orbiting satellites. We find that approximately 6% of the SSM/I observations detect measurable rain rates (R greater than 0.2 mm/h). Zonal averages of the rain rates show the peak at the intertropical convergence zone (ITCZ) is quite narrow in meridional extent and varies from about 7 mm/day in the winter to a maximum 11 mm/day in the summer. Very low precipitation rates (less than 0.3 mm/day) are observed in those areas of subsidence influenced by the large semipermanent anticyclones. In general, these features are similar to those reported in previously published rain climatologies. However, significant differences do exists between our rain rates and those produced by Spencer. These differences seem to be related to non-precipitating cloud water

    The Aquarius Salinity Retrieval Algorithm: Early Results

    Get PDF
    The Aquarius L-band radiometer/scatterometer system is designed to provide monthly salinity maps at 150 km spatial scale to a 0.2 psu accuracy. The sensor was launched on June 10, 2011, aboard the Argentine CONAE SAC-D spacecraft. The L-band radiometers and the scatterometer have been taking science data observations since August 25, 2011. The first part of this presentation gives an overview over the Aquarius salinity retrieval algorithm. The instrument calibration converts Aquarius radiometer counts into antenna temperatures (TA). The salinity retrieval algorithm converts those TA into brightness temperatures (TB) at a flat ocean surface. As a first step, contributions arising from the intrusion of solar, lunar and galactic radiation are subtracted. The antenna pattern correction (APC) removes the effects of cross-polarization contamination and spillover. The Aquarius radiometer measures the 3rd Stokes parameter in addition to vertical (v) and horizontal (h) polarizations, which allows for an easy removal of ionospheric Faraday rotation. The atmospheric absorption at L-band is almost entirely due to O2, which can be calculated based on auxiliary input fields from numerical weather prediction models and then successively removed from the TB. The final step in the TA to TB conversion is the correction for the roughness of the sea surface due to wind. This is based on the radar backscatter measurements by the scatterometer. The TB of the flat ocean surface can now be matched to a salinity value using a surface emission model that is based on a model for the dielectric constant of sea water and an auxiliary field for the sea surface temperature. In the current processing (as of writing this abstract) only v-pol TB are used for this last process and NCEP winds are used for the roughness correction. Before the salinity algorithm can be operationally implemented and its accuracy assessed by comparing versus in situ measurements, an extensive calibration and validation (cal/val) activity needs to be completed. This is necessary in order to tune the inputs to the algorithm and remove biases that arise due to the instrument calibration, foremost the values of the noise diode injection temperatures and the losses that occur in the feedhorns. This is the subject of the second part of our presentation. The basic tool is to analyze the observed difference between the Aquarius measured TA and an expected TA that is computed from a reference salinity field. It is also necessary to derive a relation between the scatterometer backscatter measurements and the radiometer emissivity that is induced by surface winds. In order to do this we collocate Aquarius radiometer and scatterometer measurements with wind speed retrievals from the WindSat and SSMIS F17 microwave radiometers. Both of these satellites fly in orbits that have the same equatorial ascending crossing time (6 pm) as the Aquarius/SAC-D observatory. Rain retrievals from WindSat and SSMIS F 17 can be used to remove Aquarius observations that are rain contaminated. A byproduct of this analysis is a prediction for the wind-induced sea surface emissivity at L-band

    Observed multivariable signals of late 20th and early 21st century volcanic activity

    Get PDF
    The relatively muted warming of the surface and lower troposphere since 1998 has attracted considerable attention. One contributory factor to this “warming hiatus” is an increase in volcanically induced cooling over the early 21st century. Here we identify the signals of late 20th and early 21st century volcanic activity in multiple observed climate variables. Volcanic signals are statistically discernible in spatial averages of tropical and near-global SST, tropospheric temperature, net clear-sky short-wave radiation, and atmospheric water vapor. Signals of late 20th and early 21st century volcanic eruptions are also detectable in near-global averages of rainfall. In tropical average rainfall, however, only a Pinatubo-caused drying signal is identifiable. Successful volcanic signal detection is critically dependent on removal of variability induced by the El Nino–Southern Oscillation.National Science Foundation (U.S.) (Grant AGS-1342810
    corecore