107 research outputs found

    Contrast-enhanced micro-CT imaging in murine carotid arteries : a new protocol for computing wall shear stress

    Get PDF
    Background: Wall shear stress (WSS) is involved in the pathophysiology of atherosclerosis. The correlation between WSS and atherosclerosis can be investigated over time using a WSS-manipulated atherosclerotic mouse model. To determine WSS in vivo, detailed 3D geometry of the vessel network is required. However, a protocol to reconstruct 3D murine vasculature using this animal model is lacking. In this project, we evaluated the adequacy of eXIA 160, a small animal contrast agent, for assessing murine vascular network on micro-CT. Also, a protocol was established for vessel geometry segmentation and WSS analysis. Methods: A tapering cast was placed around the right common carotid artery (RCCA) of ApoE(-/-) mice (n = 8). Contrast-enhanced micro-CT was performed using eXIA 160. An innovative local threshold-based segmentation procedure was implemented to reconstruct 3D geometry of the RCCA. The reconstructed RCCA was compared to the vessel geometry using a global threshold-based segmentation method. Computational fluid dynamics was applied to compute the velocity field and WSS distribution along the RCCA. Results: eXIA 160-enhanced micro-CT allowed clear visualization and assessment of the RCCA in all eight animals. No adverse biological effects were observed from the use of eXIA 160. Segmentation using local threshold values generated more accurate RCCA geometry than the global threshold-based approach. Mouse-specific velocity data and the RCCA geometry generated 3D WSS maps with high resolution, enabling quantitative analysis of WSS. In all animals, we observed low WSS upstream of the cast. Downstream of the cast, asymmetric WSS patterns were revealed with variation in size and location between animals. Conclusions: eXIA 160 provided good contrast to reconstruct 3D vessel geometry and determine WSS patterns in the RCCA of the atherosclerotic mouse model. We established a novel local threshold-based segmentation protocol for RCCA reconstruction and WSS computation. The observed differences between animals indicate the necessity to use mouse-specific data for WSS analysis. For our future work, our protocol makes it possible to study in vivo WSS longitudinally over a growing plaque

    The definition of low wall shear stress and its effect on plaque progression estimation in human coronary arteries

    Get PDF
    Wall shear stress (WSS), the frictional force of the blood on the vessel wall, plays a crucial role in atherosclerotic plaque development. Low WSS has been associated with plaque growth, however previous research used different approaches to define low WSS to investigate its effect on plaque progression. In this study, we used four methodologies to allocate low, mid and high WSS in one dataset of human coronary arteries and investigated the predictive power of low WSS for plaque progression. Coronary reconstructions were based on multimodality imaging, using intravascular ultrasound and CT-imaging. Vessel-specific flow was measured using Doppler wire and computational fluid dynamics was performed to calculate WSS. The absolute WSS range varied greatly between the coronary arteries. On the population level, the established pattern of most plaque progression at low WSS was apparent in all methodologies defining the WSS categories. However, for the individual patient, when using measured flow to determine WSS, the absolute WSS values range so widely, that the use of absolute thresholds to determine low WSS was not appropriate to identify regions at high risk for plaque progression

    Simulation of stent deployment in a realistic human coronary artery

    Get PDF
    Background: The process of restenosis after a stenting procedure is related to local biomechanical environment. Arterial wall stresses caused by the interaction of the stent with the vascular wall and possibly stress induced stent strut fracture are two important parameters. The knowledge of these parameters after stent deployment in a patient derived 3D reconstruction of a diseased coronary artery might give insights in the understanding of the process of restenosis. Methods: 3D reconstruction of a mildly stenosed coronary artery was carried out based on a combination of biplane angiography and intravascular ultrasound. Finite element method computations were performed to sim

    Contribution of Red Blood Cells and Platelets to Blood Clot Computed Tomography Imaging and Compressive Mechanical Characteristics

    Get PDF
    Thrombus computed tomography (CT) imaging characteristics may correspond with thrombus mechanical properties and thus predict thrombectomy success. The impact of red blood cell (RBC) content on these properties (imaging and mechanics) has been widely studied. However, the additional effect of platelets has not been considered. The objective of the current study was to examine the individual and combined effects of blood clot RBC and platelet content on resultant CT imaging and mechanical characteristics. Human blood clot analogues were prepared from a combination of preselected RBC volumes and platelet concentrations to decouple their contributions. The resulting clot RBC content (%) and platelet content (%) were determined using Martius Scarlet Blue and CD42b staining, respectively. Non-contrast and contrast-enhanced CT (NCCT and CECT) scans were performed to measure the clot densities. CECT density increase was taken as a proxy for clinical perviousness. Unconfined compressive mechanics were analysed by performing 10 cycles of 80% strain. RBC content is the major determinant of clot NCCT density. However, additional consideration of the platelet content improves the association. CECT density increase is influenced by clot platelet and not RBC content. Platelet content is the dominant component driving clot stiffness, especially at high strains. Both RBC and platelet content contribute to the clot's viscoelastic and plastic compressive properties. The current in vitro results suggest that CT density is reflective of RBC content and subsequent clot viscoelasticity and plasticity, and that perviousness reflects the clot's platelet content and subsequent stiffness. However, these indications should be confirmed in a clinical stroke cohort

    Tensile and Compressive Mechanical Behaviour of Human Blood Clot Analogues

    Get PDF
    Endovascular thrombectomy procedures are significantly influenced by the mechanical response of thrombi to the multi-axial loading imposed during retrieval. Compression tests are commonly used to determine compressive ex vivo thrombus and clot analogue stiffness. However, there is a shortage of data in tension. This study compares the tensile and compressive response of clot analogues made from the blood of healthy human donors in a range of compositions. Citrated whole blood was collected from six healthy human donors. Contracted and non-contracted fibrin clots, whole blood clots and clots reconstructed with a range of red blood cell (RBC) volumetric concentrations (5–80%) were prepared under static conditions. Both uniaxial tension and unconfined compression tests were performed using custom-built setups. Approximately linear nominal stress–strain profiles were found under tension, while strong strain-stiffening profiles were observed under compression. Low- and high-strain stiffness values were acquired by applying a linear fit to the initial and final 10% of the nominal stress–strain curves. Tensile stiffness values were approximately 15 times higher than low-strain compressive stiffness and 40 times lower than high-strain compressive stiffness values. Tensile stiffness decreased with an increasing RBC volume in the blood mixture. In contrast, high-strain compressive stiffness values increased from 0 to 10%, followed by a decrease from 20 to 80% RBC volumes. Furthermore, inter-donor differences were observed with up to 50% variation in the stiffness of whole blood clot analogues prepared in the same manner between healthy human donors

    The association between human blood clot analogue computed tomography imaging, composition, contraction, and mechanical characteristics

    Get PDF
    Background Clot composition, contraction, and mechanical properties are likely determinants of endovascular thrombectomy success. A pre-interventional estimation of these properties is hypothesized to aid in selecting the most suitable treatment for different types of thrombi. Here we determined the association between the aforementioned properties and computed tomography (CT) characteristics using human blood clot analogues. MethodsClot analogues were prepared from the blood of 4 healthy human donors with 5 red blood cell (RBC) volume suspensions: 0%, 20%, 40%, 60% and 80% RBCs. Contraction was measured as the weight of the contracted clots as a percentage of the original suspension. The clots were imaged using CT with and without contrast to quantify clot density and density increase. Unconfined compression was performed to determine the high strain compressive stiffness. The RBC content was analysed using H&amp;E staining. Results The 5 RBC suspensions formed only two groups of clots, fibrin-rich (0% RBCs) and RBC-rich (&gt;90% RBCs), as determined by histology. The density of the fibrin-rich clots was significantly lower (31-38HU) compared to the RBC-rich clots (72-89HU), and the density increase of the fibrin-rich clots was significantly higher (82-127HU) compared to the RBC-rich clots (3-17HU). The compressive stiffness of the fibrin-rich clots was higher (178–1624 kPa) than the stiffness of the RBC-rich clots (6–526 kPa). Additionally, the degree of clot contraction was higher for the fibrin-rich clots (89–96%) compared to the RBC-rich clots (11–77%). ConclusionsCT imaging clearly reflects clot RBC content and seems to be related to the clot contraction and stiffness. CT imaging might be a useful tool in predicting the thrombus characteristics. However, future studies should confirm these findings by analysing clots with intermediate RBC and platelet content.</p

    The association between human blood clot analogue computed tomography imaging, composition, contraction, and mechanical characteristics

    Get PDF
    Background Clot composition, contraction, and mechanical properties are likely determinants of endovascular thrombectomy success. A pre-interventional estimation of these properties is hypothesized to aid in selecting the most suitable treatment for different types of thrombi. Here we determined the association between the aforementioned properties and computed tomography (CT) characteristics using human blood clot analogues. MethodsClot analogues were prepared from the blood of 4 healthy human donors with 5 red blood cell (RBC) volume suspensions: 0%, 20%, 40%, 60% and 80% RBCs. Contraction was measured as the weight of the contracted clots as a percentage of the original suspension. The clots were imaged using CT with and without contrast to quantify clot density and density increase. Unconfined compression was performed to determine the high strain compressive stiffness. The RBC content was analysed using H&amp;E staining. Results The 5 RBC suspensions formed only two groups of clots, fibrin-rich (0% RBCs) and RBC-rich (&gt;90% RBCs), as determined by histology. The density of the fibrin-rich clots was significantly lower (31-38HU) compared to the RBC-rich clots (72-89HU), and the density increase of the fibrin-rich clots was significantly higher (82-127HU) compared to the RBC-rich clots (3-17HU). The compressive stiffness of the fibrin-rich clots was higher (178–1624 kPa) than the stiffness of the RBC-rich clots (6–526 kPa). Additionally, the degree of clot contraction was higher for the fibrin-rich clots (89–96%) compared to the RBC-rich clots (11–77%). ConclusionsCT imaging clearly reflects clot RBC content and seems to be related to the clot contraction and stiffness. CT imaging might be a useful tool in predicting the thrombus characteristics. However, future studies should confirm these findings by analysing clots with intermediate RBC and platelet content.</p

    Coronary fractional flow reserve measurements of a stenosed side branch: A computational study investigating the influence of the bifurcation angle

    Get PDF
    Background: Coronary hemodynamics and physiology specific for bifurcation lesions was not well understood. To investigate the influence of the bifurcation angle on the intracoronary hemodynamics of side branch (SB) lesions computational fluid dynamics simulations were performed. Methods: A parametric model representing a left anterior descending-first diagonal coronary bifurcation lesion was created according to the literature. Diameters obeyed fractal branching laws. Proximal and distal main branch (DMB) stenoses were both set at 60%. We varied the distal bifurcation angles (40°, 55°, and 70°), the flow splits to the DMB and SB (55%:45%, 65%:35%, and 75%:25%), and the SB stenoses (40, 60, and 80%), resulting in 27 simulations. Fractional flow reserve, defined as the ratio between the mean distal stenosis and mean aortic pressure during maximal hyperemia, was calculated for the DMB and SB (FFRSB) for all simulations. Results: The largest differences in FFRSB comparing the largest and smallest bifurcation angles were 0.02 (in cases with 40% SB stenosis, irrespective of the assumed flow split) and 0.05 (in cases with 60% SB stenosis, flow split 55%:45%). When the SB stenosis was 80%, the difference in FFRSB between the largest and smallest bifurcation angle was 0.33 (flow split 55%:45%). By describing the PSB-QSB relationship using a quadratic curve for cases with 80% SB stenosis, we found that the curve was steeper (i.e. higher flow resistance) when bifurcation angle increases (P=0.451*Q+0.010*Q 2 and P=0.687*Q+0.017*Q 2 for 40° and 70° bifurcation angle, respectively). Our analyses revealed complex hemodynamics in all cases with evident counter-rotating helical flow structures. Larger bifurcation angles resulted in more pronounced helical flow structures (i.e. higher helicity intensity), when 60 or 80% SB stenoses were present. A good correlation (R2=0.80) between the SB pressure drop and helicity intensity was also found. Conclusions: Our analyses showed that, in bifurcation lesions with 60% MB stenosis and 80% SB stenosis, SB pressure drop is higher for larger bifurcation angles suggesting higher flow resistance (i.e. curves describing the PSB-QSB relationship being steeper). When the SB stenosis is mild (40%) or moderate (60%), SB resistance is minimally influenced by the bifurcation angle, with differences not being clinically meaningful. Our findings also highlighted the complex interplay between anatomy, pressure drops, and blood flow helicity in bifurcations

    3D fusion of intravascular ultrasound and coronary computed tomography for in-vivo wall shear stress analysis: A feasibility study

    Get PDF
    Wall shear stress, the force per area acting on the lumen wall due to the blood flow, is an important biomechanical parameter in the localization and progression of atherosclerosis. To calculate shear stress and relate it to atherosclerosis, a 3D description of the lumen and vessel wall is required. We present a framework to obtain the 3D reconstruction of human coronary arteries by the fusion of intravascular ultrasound (IVUS) and coronary computed tomography angiography (CT). We imaged 23 patients with IVUS and CT. The images from both modalities were registered for 35 arteries, using bifurcations as landmarks. The IVUS images together with IVUS derived lumen and wall contours were positioned on the 3D centerline, which was derived from CT. The resulting 3D lumen and wall contours were transformed to a surface for calculation of shear stress and plaque thickness. We applied variations in selection of landmarks and investigated whether these variations influenced the relation between shear stress and plaque thickness. Fusion was successfully achieved in 31 of the 35 arteries. The average length of the fused segments was 36.4 ± 15.7 mm. The length in IVUS and CT of the fused parts correlated excellently (R2= 0.98). Both for a mildly diseased and a very diseased coronary artery, shear stress was calculated and related to plaque thickness. Variations in the selection of the landmarks for these two arteries did not affect the relationship between shear stress and plaque thickness. This new framework can therefore successfully be applied for shear stress analysis in human coronary arteries

    Imaging of inflammatory cellular protagonists in human atherosclerosis: a dual-isotope SPECT approach

    Get PDF
    Purpose: Atherosclerotic plaque development and progression signifies a complex inflammatory disease mediated by a multitude of proinflammatory leukocyte subsets. Using single photon emission computed tomography (SPECT) coupled with computed tomography (CT), this study tested a new dual-isotop
    • …
    corecore