691 research outputs found

    Pinning Down Gravitational Settling

    Get PDF
    We analyse high-resolution archival UVES data of turnoff and subgiant stars in the nearby globular cluster NGC 6397 ([Fe/H] = -2). Balmer-profile analyses are performed to derive reddening-free effective temperatures. Due to the limited S/N and uncertainties related to blaze removal, we find the data quality insufficient to exclude the existence of gravitational settling. If the newly derived effective temperatures are taken as a basis for an abundance analysis, the photospheric iron (Fe II) abundance in the turnoff stars is 0.11 dex lower than in the (well-mixed) subgiants.Comment: 4 pages, 3 figures. Summary of a talk given at the ESO-Arcetri workshop in September of 2004. See also astro-ph/060820

    Flavor content of nucleon form factors in the space- and time-like region

    Get PDF
    I discuss a two-component model of nucleon form factors in which the external photon couples both to an intrinsic three-quark structure and to a meson cloud via vector-meson dominance, and present a simultaneous analysis of the electromagnetic form factors of the nucleon in the space- and time-like regions as well as their strangeness content.Comment: 7 pages, 3 figures, invited talk at FB18, Santos, Brazil, August 21-26, 200

    NIHTS: the near-infrared high throughput spectrograph for the Discovery Channel Telescope

    Get PDF
    NIHTS is a first-generation instrument now in use on Lowell Observatory’s Discovery Channel Telescope. It is a nearinfrared prism spectrograph of the BASS design featuring high throughput and low dispersion that is intended for observations of faint solar system and astrophysical objects over the YJHK spectral range. An unusual feature is its ability to observe simultaneously with the Large Monolithic Imager, an optical CCD camera, by means of a dichroic fold mirror. This is particularly valuable for time-variable targets such as Kuiper Belt Objects, asteroids, exoplanet transits, and brown dwarfs. We describe its design details and performance both in the lab and on the telescope

    BIOTINYLATED AND CHELATED POLY-L-LYSINE AS EFFECTOR FOR PRETARGETING IN CANCER THERAPY AND IMAGING

    Get PDF
    Objective: The aim of this study was to synthesise and evaluate polylysine-based effectors for pretargeted radioimmunotherapy and imaging. These molecules can readily be size-modified and charge-modified to decrease the renal uptake of radioactivity, which is often a major problem for small radiolabeled molecules. Several chelators and biotin molecules (for antibody-streptavidin-binding in vivo) are also easily incorporated into one structure because of the polylysine.Methods: The effectors were synthesised using poly-L-lysine, NHS-LC-biotin, CHX-A''-DTPA or p-SCN-Bn-DOTA and succinic anhydride. They were characterised, labelled with 213Bi for targeted α therapy, 68Ga for PET and 111In for SPECT, and evaluated in vitro. A kidney uptake study was performed as well with two different-sized 213Bi-labeled effectors, to evaluate how the difference in size affects the renal filtration.Results: Radiochemical purities between 97.4±0.6 % and 99.6±0.1 % and decay-corrected yields of 80.2±2.4 % after purification were achieved with the radiolabeled molecules, as well as a specific activity of 7.6 × 103GBq/µmol. The avidin binding capacity was 94.4±1.9%. The kidney uptake study demonstrated a reduction of renal absorbed dose by 80% when modifying the molecular size and charge.Conclusion: The synthesised polylysine-based effectors show potential for further in vivo evaluation in pretargeted radioimmunotherapy and imaging

    The role of material, psychosocial and behavioral factors in mediating the association between socioeconomic position and allostatic load (measured by cardiovascular, metabolic and inflammatory markers)

    Get PDF
    Lower socioeconomic position (SEP), both accumulated across the life course and at different life-stages, has been found to be associated with higher cumulative physiological burden, as measured by allostatic load. This study aimed to identify what factors mediate the association between SEP and allostatic load, as measured through combining cardiovascular, metabolic and inflammatory markers. We explored the role of material, psychological and behavioral factors, accumulated across two periods in time, in mediating the association between SEP and allostatic load. Data are from the West of Scotland Twenty-07 Study, with respondents followed over five waves of data collection from ages 35 to 55 (n=999). Allostatic load was measured by summing nine binary biomarker scores ('1'= in the highest-risk quartile) measured when respondents were 55. years old (wave 5). SEP was measured by a person's accumulated social class over two periods All mediators and SEP were measured at baseline in 1987 and 20. years later and combined to form accumulated measures of risk. Material mediators included car and home ownership, and having low income. The General Health Questionnaire (GHQ-12) was used as the psychosocial mediator. Behavioral mediators included smoking, alcohol consumption, physical activity and diet. Path analysis using linear regressions adjusting for sex were performed for each of the potential mediators to assess evidence of attenuation in the association between lower SEP and higher allostatic load. Analyses by mediator type revealed that renting one's home (approximately 78% attenuation) and having low income (approx. 62% attenuation) largely attenuated the SEP-allostatic load association. GHQ did not attenuate the association. Smoking had the strongest attenuating effect of all health behaviors (by 33%) with no other health behaviors attenuating the association substantially. Material factors, namely home tenure and income status, and smoking have important roles in explaining socioeconomic disparities in allostatic load, particularly when accumulated over time

    Stability of general-relativistic accretion disks

    Full text link
    Self-gravitating relativistic disks around black holes can form as transient structures in a number of astrophysical scenarios such as binary neutron star and black hole-neutron star coalescences, as well as the core-collapse of massive stars. We explore the stability of such disks against runaway and non-axisymmetric instabilities using three-dimensional hydrodynamics simulations in full general relativity using the THOR code. We model the disk matter using the ideal fluid approximation with a Γ\Gamma-law equation of state with Γ=4/3\Gamma=4/3. We explore three disk models around non-rotating black holes with disk-to-black hole mass ratios of 0.24, 0.17 and 0.11. Due to metric blending in our initial data, all of our initial models contain an initial axisymmetric perturbation which induces radial disk oscillations. Despite these oscillations, our models do not develop the runaway instability during the first several orbital periods. Instead, all of the models develop unstable non-axisymmetric modes on a dynamical timescale. We observe two distinct types of instabilities: the Papaloizou-Pringle and the so-called intermediate type instabilities. The development of the non-axisymmetric mode with azimuthal number m = 1 is accompanied by an outspiraling motion of the black hole, which significantly amplifies the growth rate of the m = 1 mode in some cases. Overall, our simulations show that the properties of the unstable non-axisymmetric modes in our disk models are qualitatively similar to those in Newtonian theory.Comment: 30 pages, 21 figure

    Bioengineering bacterial encapsulin nanocompartments as targeted drug delivery system

    Get PDF
    The development of Drug Delivery Systems (DDS) has led to increasingly efficient therapies for the treatment and detection of various diseases. DDS use a range of nanoscale delivery platforms produced from polymeric of inorganic materials, such as micelles, and metal and polymeric nanoparticles, but their variant chemical composition make alterations to their size, shape, or structures inherently complex. Genetically encoded protein nanocages are highly promising DDS candidates because of their modular composition, ease of recombinant production in a range of hosts, control over assembly and loading of cargo molecules and biodegradability. One example of naturally occurring nanocompartments are encapsulins, recently discovered bacterial organelles that have been shown to be reprogrammable as nanobioreactors and vaccine candidates. Here we report the design and application of a targeted DDS platform based on the Thermotoga maritima encapsulin reprogrammed to display an antibody mimic protein called Designed Ankyrin repeat protein (DARPin) on the outer surface and to encapsulate a cytotoxic payload. The DARPin9.29 chosen in this study specifically binds to human epidermal growth factor receptor 2 (HER2) on breast cancer cells, as demonstrated in an in vitro cell culture model. The encapsulin-based DDS is assembled in one step in vivo by co-expressing the encapsulin-DARPin9.29 fusion protein with an engineered flavin-binding protein mini-singlet oxygen generator (MiniSOG), from a single plasmid in Escherichia coli. Purified encapsulin-DARPin_miniSOG nanocompartments bind specifically to HER2 positive breast cancer cells and trigger apoptosis, indicating that the system is functional and specific. The DDS is modular and has the potential to form the basis of a multi-receptor targeted system by utilising the DARPin screening libraries, allowing use of new DARPins of known specificities, and through the proven flexibility of the encapsulin cargo loading mechanism, allowing selection of cargo proteins of choice

    Empirically Constrained Color-Temperature Relations. II. uvby

    Full text link
    (Abriged) A new grid of theoretical color indices for the Stromgren uvby photometric system has been derived from MARCS model atmospheres and SSG synthetic spectra for cool dwarf and giant stars. At warmer temperatures this grid has been supplemented with the synthetic uvby colors from recent Kurucz atmospheric models without overshooting. Our transformations appear to reproduce the observed colors of extremely metal-poor turnoff and giant stars (i.e., [Fe/H]<-2). Due to a number of assumptions made in the synthetic color calculations, however, our color-temperature relations for cool stars fail to provide a suitable match to the uvby photometry of both cluster and field stars having [Fe/H]>-2. To overcome this problem, the theoretical indices at intermediate and high metallicities have been corrected using a set of color calibrations based on field stars having accurate IRFM temperature estimates and spectroscopic [Fe/H] values. Encouragingly, isochrones that employ the transformations derived in this study are able to reproduce the observed CMDs (involving u-v, v-b, and b-y colors) for a number of open and globular clusters (including M92, M67, the Hyades, and 47Tuc) rather well. Moreover, our interpretations of such data are very similar, if not identical, with those given by VandenBerg & Clem (2003, AJ, 126, 778) from a consideration of BV(RI)c observations for the same clusters. In the present investigation, we have also analyzed the observed Stromgren photometry for the classic Population II subdwarfs, compared our "final" (b-y)-Teff relationship with those derived empirically in a number of recent studies, and examined in some detail the dependence of the m1 index on [Fe/H].Comment: 70 pages, 26 figures. Accepted for publication in AJ (Feb 2004). Postscript version with high resolution figures and complete Table 3 available at http://astrowww.phys.uvic.ca/~jclem/uvb
    corecore