9 research outputs found

    Use of machine learning to shorten observation-based screening and diagnosis of autism

    Get PDF
    The Autism Diagnostic Observation Schedule-Generic (ADOS) is one of the most widely used instruments for behavioral evaluation of autism spectrum disorders. It is composed of four modules, each tailored for a specific group of individuals based on their language and developmental level. On average, a module takes between 30 and 60 min to deliver. We used a series of machine-learning algorithms to study the complete set of scores from Module 1 of the ADOS available at the Autism Genetic Resource Exchange (AGRE) for 612 individuals with a classification of autism and 15 non-spectrum individuals from both AGRE and the Boston Autism Consortium (AC). Our analysis indicated that 8 of the 29 items contained in Module 1 of the ADOS were sufficient to classify autism with 100% accuracy. We further validated the accuracy of this eight-item classifier against complete sets of scores from two independent sources, a collection of 110 individuals with autism from AC and a collection of 336 individuals with autism from the Simons Foundation. In both cases, our classifier performed with nearly 100% sensitivity, correctly classifying all but two of the individuals from these two resources with a diagnosis of autism, and with 94% specificity on a collection of observed and simulated non-spectrum controls. The classifier contained several elements found in the ADOS algorithm, demonstrating high test validity, and also resulted in a quantitative score that measures classification confidence and extremeness of the phenotype. With incidence rates rising, the ability to classify autism effectively and quickly requires careful design of assessment and diagnostic tools. Given the brevity, accuracy and quantitative nature of the classifier, results from this study may prove valuable in the development of mobile tools for preliminary evaluation and clinical prioritization—in particular those focused on assessment of short home videos of children—that speed the pace of initial evaluation and broaden the reach to a significantly larger percentage of the population at risk

    Huntington's disease and its therapeutic target genes: a global functional profile based on the HD Research Crossroads database.

    Get PDF
    BACKGROUND: Huntington's disease (HD) is a fatal progressive neurodegenerative disorder caused by the expansion of the polyglutamine repeat region in the huntingtin gene. Although the disease is triggered by the mutation of a single gene, intensive research has linked numerous other genes to its pathogenesis. To obtain a systematic overview of these genes, which may serve as therapeutic targets, CHDI Foundation has recently established the HD Research Crossroads database. With currently over 800 cataloged genes, this web-based resource constitutes the most extensive curation of genes relevant to HD. It provides us with an unprecedented opportunity to survey molecular mechanisms involved in HD in a holistic manner. METHODS: To gain a synoptic view of therapeutic targets for HD, we have carried out a variety of bioinformatical and statistical analyses to scrutinize the functional association of genes curated in the HD Research Crossroads database. In particular, enrichment analyses were performed with respect to Gene Ontology categories, KEGG signaling pathways, and Pfam protein families. For selected processes, we also analyzed differential expression, using published microarray data. Additionally, we generated a candidate set of novel genetic modifiers of HD by combining information from the HD Research Crossroads database with previous genome-wide linkage studies. RESULTS: Our analyses led to a comprehensive identification of molecular mechanisms associated with HD. Remarkably, we not only recovered processes and pathways, which have frequently been linked to HD (such as cytotoxicity, apoptosis, and calcium signaling), but also found strong indications for other potentially disease-relevant mechanisms that have been less intensively studied in the context of HD (such as the cell cycle and RNA splicing, as well as Wnt and ErbB signaling). For follow-up studies, we provide a regularly updated compendium of molecular mechanism, that are associated with HD, at http://hdtt.sysbiolab.eu Additionally, we derived a candidate set of 24 novel genetic modifiers, including histone deacetylase 3 (HDAC3), metabotropic glutamate receptor 1 (GRM1), CDK5 regulatory subunit 2 (CDK5R2), and coactivator 1ß of the peroxisome proliferator-activated receptor gamma (PPARGC1B). CONCLUSIONS: The results of our study give us an intriguing picture of the molecular complexity of HD. Our analyses can be seen as a first step towards a comprehensive list of biological processes, molecular functions, and pathways involved in HD, and may provide a basis for the development of more holistic disease models and new therapeutics

    The Physiology of Motor Units in Mammalian Skeletal Muscle

    No full text

    Targeted sequencing identifies 91 neurodevelopmental-disorder risk genes with autism and developmental-disability biases

    No full text
    Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 patients and >2,867 controls. We report 91 genes with an excess of de novo mutations or private disruptive mutations in 5.7% of patients, including 38 novel NDD genes. Drosophila functional assays of a subset bolster their involvement in NDDs. We identify 25 genes that show a bias for autism versus intellectual disability and highlight a network associated with high-functioning autism (FSIQ>100). Clinical follow-up for NAA15, KMT5B, and ASH1L reveals novel syndromic and non-syndromic forms of disease

    Induction, assembly, maturation and maintenance of a postsynaptic apparatus

    No full text

    Modeling neuromuscular junctions <em>in vitro</em>: A review of the current progress employing human induced pluripotent stem cells

    No full text

    Bibliography

    No full text

    Whole-genome sequencing targets drug-resistant bacterial infections

    No full text
    corecore