60 research outputs found

    Understanding ATP-mediated Vasodilatation in Humans

    Get PDF
    Negative results, cynicism, the piecing together of puzzles and integrating physiology with experimental approaches are all part of the inspiring and meandering journey on the path to understand ATP-mediated vasodilatation. While it is satisfying to be right as scientists, we know sometimes the most important progress occurs when data are surprising or contrary to our original hypothesis. The pursuit of explanations for unexpected findings often leads to the best advancements. The story of how our laboratory came to investigate the underlying vasodilatator pathways of adenosine triphosphate (ATP) is an example of such a path to our current understanding

    Intravascular ATP and the regulation of blood flow and oxygen delivery in humans

    Get PDF
    Regulation of vascular tone is a complex response that integrates multiple signals which allow for blood flow and oxygen supply to appropriately match oxygen demand. Here, we discuss the potential role of intravascular ATP as a primary factor in these responses and propose that deficient ATP release may contribute to impairments in vascular control exhibited in aged and diseased populations

    KIR channel activation contributes to onset and steady-state exercise hyperemia in humans

    Get PDF
    We tested the hypothesis that activation of inwardly rectifying potassium (KIR) channels and Na+-K+-ATPase, two pathways that lead to hyperpolarization of vascular cells, contributes to both the onset and steady-state hyperemic response to exercise. We also determined whether after inhibiting these pathways nitric oxide (NO) and prostaglandins (PGs) are involved in the hyperemic response. Forearm blood flow (FBF; Doppler ultrasound) was determined during rhythmic handgrip exercise at 10% maximal voluntary contraction for 5 min in the following conditions: control [saline; trial 1 (T1)]; with combined inhibition of KIR channels and Na+-K+-ATPase alone [via barium chloride (BaCl2) and ouabain, respectively; trial 2(T2)]; and with additional combined nitric oxide synthase (NG-monomethyl-l-arginine) and cyclooxygenase inhibition [ketorolac; trial 3 (T3)]. In T2, the total hyperemic responses were attenuated ∼50% from control (P \u3c 0.05) at exercise onset, and there was minimal further effect in T3 (protocol 1; n= 11). In protocol 2 (n = 8), steady-state FBF was significantly reduced during T2 vs. T1 (133 ± 15 vs. 167 ± 17 ml/min; Δ from control: −20 ± 3%; P \u3c 0.05) and further reduced during T3 (120 ± 15 ml/min; −29 ± 3%; P \u3c 0.05 vs. T2). In protocol 3 (n = 8), BaCl2 alone reduced FBF during onset (∼50%) and steady-state exercise (∼30%) as observed in protocols 1 and 2, respectively, and addition of ouabain had no further impact. Our data implicate activation of KIR channels as a novel contributing pathway to exercise hyperemia in humans

    Muscle Contraction Duration and Fibre Recruitment Influence Blood Flow and VO2 Independent of Contractile Work during Steady-State Exercise in Humans

    Get PDF
    We tested the hypothesis that, among conditions of matched contractile work, shorter contraction durations and greater muscle fibre recruitment result in augmented skeletal muscle blood flow and oxygen consumption (O2) during steady-state exercise in humans. To do so, we measured forearm blood flow (FBF; Doppler ultrasound) during 4 minutes of rhythmic handgrip exercise in 24 healthy young adults and calculated forearm O2 via blood samples obtained from a catheter placed in retrograde fashion into a deep vein draining the forearm muscle. In Protocol 1 (n = 11), subjects performed rhythmic isometric handgrip exercise at mild and moderate intensities under conditions in which tension time index (TTI; isometric analog of work) was held constant but contraction duration was manipulated. In this protocol, shorter contraction durations led to greater FBF (184 ± 25 vs. 164 ± 25 ml·min-1) and O2 (23 ± 3 vs. 17 ± 2 ml·min-1; both PPper se during steady-state exercise in humans

    Reactive Hyperemia Occurs Via Activation of Inwardly Rectifying Potassium Channels and Na+/K+-ATPase in Humans

    Get PDF
    Rationale: Reactive hyperemia (RH) in the forearm circulation is an important marker of cardiovascular health, yet the underlying vasodilator signaling pathways are controversial and thus remain unclear. Objective: We hypothesized that RH occurs via activation of inwardly rectifying potassium (KIR) channels and Na+/K+-ATPase and is largely independent of the combined production of the endothelial autocoids nitric oxide (NO) and prostaglandins in young healthy humans. Methods and Results: In 24 (23±1 years) subjects, we performed RH trials by measuring forearm blood flow (FBF; venous occlusion plethysmography) after 5 minutes of arterial occlusion. In protocol 1, we studied 2 groups of 8 subjects and assessed RH in the following conditions. For group 1, we studied control (saline), KIR channel inhibition (BaCl2), combined inhibition of KIR channels and Na+/K+-ATPase (BaCl2 and ouabain, respectively), and combined inhibition of KIR channels, Na+/K+-ATPase, NO, and prostaglandins (BaCl2, ouabain, L-NMMA [NG-monomethyl-L-arginine] and ketorolac, respectively). Group 2 received ouabain rather than BaCl2 in the second trial. In protocol 2 (n=8), the following 3 RH trials were performed: control; L-NMMA plus ketorolac; and L-NMMA plus ketorolac plus BaCl2 plus ouabain. All infusions were intra-arterial (brachial). Compared with control, BaCl2 significantly reduced peak FBF (−50±6%; P2 (−61±3%) and ouabain (−44±12%) alone, and this effect was enhanced when combined (−87±4%), nearly abolishing RH. L-NMMA plus ketorolac did not impact total RH FBF before or after administration of BaCl2 plus ouabain. Conclusions: Activation of KIR channels is the primary determinant of peak RH, whereas activation of both KIR channels and Na+/K+-ATPase explains nearly all of the total (AUC) RH in humans

    Impaired Peripheral Vasodilation during Graded Systemic Hypoxia in Healthy Older Adults: Role of the Sympathoadrenal System

    Get PDF
    Systemic hypoxia is a physiological and pathophysiological stress that activates the sympathoadrenal system and, in young adults, leads to peripheral vasodilation. We tested the hypothesis that peripheral vasodilation to graded systemic hypoxia is impaired in older healthy adults and that this age-associated impairment is due to attenuated β-adrenergic mediated vasodilation and elevated α-adrenergic vasoconstriction. Forearm blood flow was measured (Doppler ultrasound) and vascular conductance (FVC) was calculated in 12 young (24±1 yrs) and 10 older (63±2 yrs) adults to determine the local dilatory responses to graded hypoxia (90, 85, and 80% O2 saturations) in control conditions, following local intra-arterial blockade of β-receptors (propranolol), and combined blockade of α+β receptors (phentolamine + propranolol). Under control conditions, older adults exhibited impaired vasodilation to hypoxia compared with young at all levels of hypoxia (peak ΔFVC at 80% SpO2 = 4±6 vs. 35±8%; P\u3c0.01). During β-blockade, older adults actively constricted at 85 and 80% SpO2 (peak ΔFVC at 80% SpO2= -13±6%; P\u3c0.05 vs. control) whereas the response in the young was not significantly impacted (peak ΔFVC = 28±8%). Combined α+β blockade increased the dilatory response to hypoxia in young adults, however older adults failed to significantly vasodilate (peak ΔFVC at 80% SpO2= 12±11% vs. 58±11%; P\u3c0.05). Our findings indicate that peripheral vasodilation to graded systemic hypoxia is significantly impaired in older adults which cannot be fully explained by altered sympathoadrenal control of vascular tone. Thus, the impairment in hypoxic vasodilation is likely due to attenuated local vasodilatory and/or augmented vasoconstrictor signaling with age

    Sources of Intravascular ATP During Exercise in Humans: Critical Role for Skeletal Muscle Perfusion

    Get PDF
    Exercise hyperemia is regulated by several factors and one factor known to increase with exercise that evokes powerful vasomotor action is extracellular ATP. The origination of ATP detectable in plasma from exercising muscle of humans is, however, a matter of debate and ATP has been suggested to arise from sympathetic nerves, blood sources (e.g. erythrocytes), endothelial cells, and skeletal myocytes, among others. Therefore, we tested the hypothesis that acute augmentation of sympathetic nervous system activity (SNA) results in elevated plasma ATP draining skeletal muscle, and that SNA superimposition during exercise further increases ATP vs exercise alone. We show that increased SNA via −40mmHg lower body negative pressure (LBNP) at rest does not increase plasma ATP (51±8 vs 58±7 nmol/L with LBNP), nor does it increase [ATP] above levels observed during rhythmic handgrip exercise (79±11 exercise alone vs 71±8 nmol/L with LBNP). Secondly, we tested the hypothesis that active perfusion of skeletal muscle is essential to observe increased plasma ATP during exercise. We identify that complete obstruction of blood flow to contracting muscle abolishes exercise-mediated increases in plasma ATP (90±19 to 49±12 nmol/L), and further, that cessation of blood flow prior to exercise completely inhibits the typical rise in ATP (3 vs 61%; obstructed vs intact perfusion). The lack of ATP change during occlusion occurred in the face of continued muscle work and elevated SNA, indicating the rise of intravascular ATP is not resultant from these extravascular sources. Our collective observations indicate that the elevation in extracellular ATP observed in blood during exercise is unlikely to originate from sympathetic nerves or the contacting muscle itself, but rather is dependent on intact skeletal muscle perfusion. We conclude that an intravascular source for ATP is essential and points toward an important role for blood sources (e.g. red blood cells) in augmenting and maintaining elevated plasma ATP during exercise

    Augmented Skeletal Muscle Hyperaemia during Hypoxic Exercise in Humans Is Blunted by Combined Inhibition of Nitric Oxide and Vasodilating Prostaglandins

    No full text
    Exercise hyperaemia in hypoxia is augmented relative to the same level of exercise in normoxia. At moderate exercise intensities, the mechanism(s) underlying this augmented response are currently unclear. We tested the hypothesis that endothelium-derived nitric oxide (NO) and vasodilating prostaglandins (PGs) contribute to the augmented muscle blood flow during hypoxic exercise relative to normoxia. In 10 young healthy adults, we measured forearm blood flow (FBF; Doppler ultrasound) and calculated the vascular conductance (FVC) responses during 5 min of rhythmic handgrip exercise at 20% maximal voluntary contraction in normoxia (NormEx) and isocapnic hypoxia (HypEx; O2 saturation ∼85%) before and after local intra-brachial combined blockade of NO synthase (NOS; via NG-monomethyl-l-arginine: l-NMMA) and cyclooxygenase (COX; via ketorolac). All trials were performed during local α- and β-adrenoceptor blockade to eliminate sympathoadrenal influences on vascular tone and thus isolate local vasodilatation. Arterial and deep venous blood gases were measured and oxygen consumption () was calculated. In control (saline) conditions, FBF after 5 min of exercise in hypoxia was greater than in normoxia (345 ± 21 ml min−1vs. 297 ± 18 ml min−1; P \u3c 0.05). After NO–PG block, the compensatory increase in FBF during hypoxic exercise was blunted ∼50% and thus was reduced compared with control hypoxic exercise (312 ± 19 ml min−1; P \u3c 0.05), but this was not the case in normoxia (289 ± 15 ml min−1; P = 0.33). The lower FBF during hypoxic exercise was associated with a compensatory increase in O2 extraction, and thus was maintained at normal control levels (P = 0.64–0.99). We conclude that under the experimental conditions employed, NO and PGs have little role in normoxic exercise hyperaemia whereas combined NO–PG inhibition reduces hypoxic exercise hyperaemia and abolishes hypoxic vasodilatation at rest. Additionally, of the tissue was maintained in hypoxic conditions at rest and during exercise, despite attenuated oxygen delivery following NO–PG blockade, due to an increase in O2 extraction at the level of the muscle
    • …
    corecore