5 research outputs found

    GPCR proteomics: mass spectrometric and functional analysis of histamine H1 receptor after baculovirus-driven and in vitro cell free expression

    No full text
    Item does not contain fulltextThe human histamine H1 Receptor (hH1R) belongs to the family of G-protein coupled receptors (GPCRs), an attractive and proven class of drug targets in a wide range of therapeutic areas. However, due to the low amount of available purified protein and the hydrophobic nature of GPCRs, limited structural information is available on ligand-receptor interaction especially for the transmembrane (TM) domain regions where the majority of ligand-receptor interactions occur. During the last decades, proteomic techniques have increasingly become an important tool to reveal detailed information on the individual GPCR class, including post-translational modifications and characterizations of GPCRs binding pocket. Herein, we report the successful functional production and mass spectrometric characterization of the hH1R, after baculovirus-driven and in vitro cell-free expression. Using only MALDI-ToF, sequence coverage of more than 80%, including five hydrophobic TM domains was achieved. Moreover, we have identified an asparagine residue in the hH1R protein that is subject to N-linked glycosylation. This information would be valuable for drug discovery efforts by allowing us to further study H1R-ligand interactions using histaminergic ligands that covalently bind the hH1R, and eventually revealing binding sites of hH1R and other GPCRs

    Autosomal Dominant Polycystic Kidney Disease

    No full text

    Über die (aseptische) Harnstauungsniere

    No full text
    corecore