1,329 research outputs found

    Modeling the microstructural evolution during constrained sintering

    Get PDF
    A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress as well as the FEM calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of a sample constrained by a rigid substrate is simulated. The constrained sintering results in a larger number of pores near the substrate, as well as anisotropic sintering shrinkage, with significantly enhanced strain in the central upper part of the sample surface, and minimal strain at the edges near the substrate. All these features have also previously been observed experimentally.Comment: 9 pages, 7 figure

    Halo independent comparison of direct dark matter detection data

    Get PDF
    We extend the halo-independent method of Fox, Liu, and Weiner to include energy resolution and efficiency with arbitrary energy dependence, making it more suitable for experiments to use in presenting their results. Then we compare measurements and upper limits on the direct detection of low mass (10\sim10 GeV) weakly interacting massive particles with spin-independent interactions, including the upper limit on the annual modulation amplitude from the CDMS collaboration. We find that isospin-symmetric couplings are severely constrained both by XENON100 and CDMS bounds, and that isospin-violating couplings are still possible at the lowest energies, while the tension of the higher energy CoGeNT bins with the CDMS modulation constraint remains. We find the CRESST II signal is not compatible with the modulation signals of DAMA and CoGeNT.Comment: version slightly longer than the first, with 3 additional figures and the latest XENON100 bound added. 7 pages, 5 figure

    Identification of OSSO as a near-UV absorber in the Venusian atmosphere

    Get PDF
    The planet Venus exhibits atmospheric absorption in the 320–400 nm wavelength range produced by unknown chemistry. We investigate electronic transitions in molecules that may exist in the atmosphere of Venus. We identify two different S_2O_2 isomers, cis-OSSO and trans-OSSO, which are formed in significant amounts and are removed predominantly by near-UV photolysis. We estimate the rate of photolysis of cis- and trans-OSSO in the Venusian atmosphere and find that they are good candidates to explain the enigmatic 320–400 nm near-UV absorption. Between 58 and 70 km, the calculated OSSO concentrations are similar to those of sulfur monoxide (SO), generally thought to be the second most abundant sulfur oxide on Venus

    Dragthistorie i retsbetjentarkiverne

    Get PDF

    Visen om krybskyttens død

    Get PDF

    Dansk Planteforædlingsvirksomhed.

    Get PDF
    Dansk Planteforædlingsvirksomhed

    Landhusholdningsselskabets største sølvbæger tildelt.

    Get PDF
    Landhusholdningsselskabets største sølvbæger tildelt

    Planteforædlingsarbejdets Opgaver og Muligheder.

    Get PDF
    Planteforædlingsarbejdets Opgaver og Muligheder

    Relic Abundance of Asymmetric Dark Matter

    Full text link
    We investigate the relic abundance of asymmetric Dark Matter particles that were in thermal equilibrium in the early universe. The standard analytic calculation of the symmetric Dark Matter is generalized to the asymmetric case. We calculate the asymmetry required to explain the observed Dark Matter relic abundance as a function of the annihilation cross section. We show that introducing an asymmetry always reduces the indirect detection signal from WIMP annihilation, although it has a larger annihilation cross section than symmetric Dark Matter. This opens new possibilities for the construction of realistic models of MeV Dark Matter.Comment: 20 pages, 11 figures, Accepted by JCA
    corecore