163 research outputs found

    Dyes adsorption from aqueous solutions by Chitosan

    Get PDF
    In this study the ability of chitosan to remove acid, basic, reactive and direct dyestuffs by adsorption was studied. The effect of several factors influencing dye adsorption such as dye concentration, grain size, pH and temperature were investigated. Desorption of dyes at different pH was also examined. It was shown that the adsorption capacities of chitosan were comparatively high for acid and direct dyes and that the adsorption was controlled by the acidity of the solution. The kinetics of adsorption were found to be of pseudo second order. Batch isotherm studies showed that adsorption of dyes from aqueous solution by chitosan was described by the Langmuir equation

    Intermolecular interaction and solid state characterization of abietic acid/chitosan solid dispersions possessing antimicrobial and antioxidant properties

    Get PDF
    The aim of this work was to prepare and characterize solid dispersions of abietic acid (AB) and chitosan (CS) to investigate how formulation of the mixture may help in the battle against microbial colonization in different areas, such as the biomedical field or the food industry. Solid dispersions were characterized by differential scanning calorimetry, infrared spectroscopy, Raman spectroscopy, polarized optical microscopy, zeta potential and size analysis. The data showed that the dispersion/solvent evaporation method formed solid dispersions in which abietic acid was molecularly dispersed in the carrier. A synergistic effect between the two components in terms of antioxidant and antimicrobial properties was found, especially in the formulations obtained with 1/1 AB/CS molar ratio. Interestingly, the aggregation state (amorphous/crystalline) of AB seemed to affect the antimicrobial activity of the formulation, suggesting increased bioactivity when the drug was in the amorphous state. These findings, together with the demonstrated biocompatibility of the formulations, seem to open promising perspectives for a successful application of the developed AB/CS formulations in the biomedical field or in the food industry

    Extraction of microalgal starch and pigments by using different cell disruption methods and aqueous two-phase system

    Get PDF
    AbstractBACKGROUNDMicroalgae can synthesize starch with productivity higher than conventional terrestrial crops, without the need for arable land. However, little is known about processes to extract starch from microalgae. Here, a biorefinery process is described including microalgal cell disruption followed by extraction of starch and pigments with aqueous two‐phase system (ATPS) using choline chloride and polypropylene glycol 400. Sonication and bead milling were compared for cell disruption rate and starch extraction efficiency.RESULTSA first order kinetic model described well the cell disruption for both the methods, with a rate 2.6 times higher for bead milling than sonication. By applying ATPS on samples with comparable cell disruption (>93%), starch was separated better after sonication (67% recovery in the pellet) than after bead milling, for which it remained equally distributed between pellet (40%) and choline chloride phase. Pigments were extracted with 42–66% yield irrespective of the cell disruption method. Microalgal starch granules had a normal and narrow distribution for size (0.93 ± 0.14 Όm) and a gelatinization temperature between 45–55 °C.CONCLUSIONFor the same cell disruption yield, different starch separation efficiencies can be achieved, depending on the cell disruption method applied. Although bead milling was faster than sonication in disrupting cells, it gave worst starch separation efficiency. The properties of the extracted microalgal starch indicate potential technical advantages, with respect to conventional starch sources, for applications in the bioplastic and food sector. © 2021 The Authors. Journal of Chemical Technology and Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry (SCI)

    Application of temperature modulation to FTIR spectroscopy: an analysis of equilibrium and non-equilibrium conformational transitions of poly(ethylene terephthalate) in glassy and liquid states

    Get PDF
    AbstractIn this paper, the application of a temperature modulation to the temperature-resolved FTIR analysis is reported. The advantage offered by the spectroscopic investigation, able to follow the micro-structural and conformational sample modification involved in sample thermal transformation, was merged to that of temperature modulation, related to the possibility to separate the reversing (in-equilibrium within the experimental condition) to the non-reversing (non-equilibrium) processes. The potentiality of the technique (modulated temperature FTIR, MTFTIR) is highlighted through the study of the thermal transitions of amorphous poly(ethylene terephthalate) from 50 °C to the cold-crystallization. After the presentation of the theoretical framework and the experimental conditions, a step-by-step description of acquired data elaboration is given. The total variation of a selected band intensity as function of mean temperature as well as its reversing and non-reversing components are obtained. The evolution of the bands at 1340 and 971 cm−1, assigned to the trans conformation of the ethylenic unit and to the all-trans conformation of the repeating unit, respectively, are investigated. As expected, the glass transition is observed in the reversing components meanwhile the recovery of the glass relaxation and cold crystallization in non-reversing ones. Particularly interesting resulted the behaviour of the sample in the supercooled liquid state, between the glass transition and the cold-crystallization onset, in which the results show that the ethylenic conformers are in-equilibrium while the all-trans sequences are not. MTFTIR is confirmed to be a technique particularly suitable for the characterization of non-equilibrium conformational states of polymers

    Chromium(III) Removal from Wastewater by Chitosan Flakes

    Get PDF
    Chitosan is very effective in removing metal ions through their adsorption. A preliminary investigation of the adsorption of chromium(III) by chitosan was carried out by means of batch tests as a function of contact time, pH, ion competition, and initial chromium(III) concentration. The rate of adsorption was rather rapid (t1/2 < 18 min) and influenced by the presence of other metal ions. The obtained data were tested using the Langmuir and Freundlich isotherm models and, based on R2 values, the former appeared better applicable than the latter. Chitosan was found to have an excellent loading capacity for chromium(III), namely 138.0 mg Cr per g of chitosan at pH = 3.8, but metal ions adsorption was strongly influenced by the pH. About 76% of the recovered chromium was then removed simply by washing the used chitosan with 0.1 M EDTA (Ethylenediaminetetraacetic acid) solution. This study demonstrates that chitosan has the potential to become an effective and low-cost agent for wastewater treatment (e.g., tannery waste) and in situ environmental remediation

    Amino-functionalized poly(l-lactide) lamellar single crystals as a valuable substrate for delivery of HPV16-E7 tumor antigen in vaccine development

    Get PDF
    Background: Poly(L-lactide) (PLLA) is a biodegradable polymer currently used in many biomedical applications, including the production of resorbable surgical devices, porous scaffolds for tissue engineering, nanoparticles and microparticles for the controlled release of drugs or antigens. The surfaces of lamellar PLLA single crystals (PLLAsc) were provided with amino groups by reaction with a multifunctional amine and used to adsorb an Escherichia coli-produced human papillomavirus (HPV)16-E7 protein to evaluate its possible use in antigen delivery for vaccine development. Methods: PLLA single crystals were made to react with tetraethylenepentamine to obtain amino-functionalized PLLA single crystals (APLLAsc). Pristine and amino-functionalized PLLAsc showed a two-dimensional microsized and one-dimensional nanosized lamellar morphology, with a lateral dimension of about 15–20 ”m, a thickness of about 12 nm, and a surface specific area of about 130 m2/g. Both particles were characterized and loaded with HPV16-E7 before being administered to C57BL/6 mice for immunogenicity studies. The E7-specific humoral-mediated and cell-mediated immune response as well as tumor protective immunity were analyzed in mice challenged with TC-1 cancer cells. Results: Pristine and amino-functionalized PLLAsc adsorbed similar amounts of E7 protein, but in protein-release experiments E7-PLLAsc released a higher amount of protein than E7-APLLAsc. When the complexes were dried for observation by scanning electron microscopy, both samples showed a compact layer, but E7-APLLAsc showed greater roughness than E7-PLLAsc. Immunization experiments in mice showed that E7-APLLAsc induced a stronger E7-specific immune response when compared with E7-PLLAsc. Immunoglobulin G isotyping and interferon gamma analysis suggested a mixed Th1/Th2 immune response in both E7-PLLAsc-immunized and E7-APLLAsc-immunized mice. However, only the mice receiving E7-APLLAsc were fully protected from TC-1 tumor growth after three doses of vaccine. Conclusion: Our results show that APLLA single crystals improve the immunogenicity of HPV16-E7 and indicate that E7-APLLAsc could be used for development of an HPV16 therapeutic vaccine against HPV16-related tumors

    Polyglycerol Adipate-Grafted Polycaprolactone Nanoparticles as Carriers for the Antimicrobial Compound Usnic Acid

    Get PDF
    Nanoparticle (NP) drug delivery systems are known to potentially enhance the efficacy of therapeutic agents. As for antimicrobial drugs, therapeutic solutions against drug-resistant microbes are urgently needed due to the worldwide antimicrobial resistance issue. Usnic acid is a widely investigated antimicrobial agent suffering from poor water solubility. In this study, polymer nanoparticles based on polyglycerol adipate (PGA) grafted with polycaprolactone (PCL) were developed as carriers for usnic acid. We demonstrated the potential of the developed systems in ensuring prolonged bactericidal activity against a model bacterial species, Staphylococcus epidermidis. The macromolecular architecture changes produced by PCL grafted from PGA significantly influenced the drug release profile and mechanism. Specifically, by varying the length of PCL arms linked to the PGA backbone, it was possible to tune the drug release from a burst anomalous drug release (high PCL chain length) to a slow diffusion-controlled release (low PCL chain length). The developed nanosystems showed a prolonged antimicrobial activity (up to at least 7 days) which could be used in preventing/treating infections occurring at different body sites, including medical device-related infection and mucosal/skin surface, where Gram-positive bacteria are commonly involved

    Colorimetric transition of polydiacetylene/cyclodextrin supramolecular assemblies and implications as colorimetric sensors for food phenolic antioxidants

    Get PDF
    Molecular self-assembly has significant potential in the field of sensing. Polydiacetylenes (PDAs) are conjugated polymers possessing peculiar optical properties obtained by photopolymerization of self-assembled diacetylene monomers. Herein, the blue-to-red phase transition upon either thermal stimulus or interaction with cyclodextrins (CDs) of two PDAs, bearing either carboxylic (PCDA) or amino (PCDA-NH2) polar heads, is investigated to develop a colorimetric sensor for food phenolic antioxidants. The change in the PDA polar head does not affect significantly thermo-chromatic transition. Upon thermal stimulus, in both PDAs, color transition occurs straightforward between two distinct stable states and does not involve the disordering of the PDA crystal phase, as revealed by UV-vis spectroscopy and SAXS analysis. Contrarily, PDA/alpha-CD interaction is influenced by intermolecular forces among PDA polar heads and is more efficient for PCDA. alpha-CDs presumably cause changes in both PDA backbone conformation and local environment surrounding the individual PDA chains. The PCDA/alpha-CD assemblies are investigated as colorimetric sensors for the detection of Tyrosol (Ty) and caffeic acid (CAF), by using the principle of competitive inclusion complex formation. The system results to be more sensitive to CAF than Ty and may permit the determination of CAF in concentration ranges suitable for different food products

    Nanostructured Poly-l-lactide and Polyglycerol Adipate Carriers for the Encapsulation of Usnic Acid: A Promising Approach for Hepatoprotection

    Get PDF
    The present study investigates the utilization of nanoparticles based on poly-l-lactide (PLLA) and polyglycerol adipate (PGA), alone and blended, for the encapsulation of usnic acid (UA), a potent natural compound with various therapeutic properties including antimicrobial and anticancer activities. The development of these carriers offers an innovative approach to overcome the challenges associated with usnic acid’s limited aqueous solubility, bioavailability, and hepatotoxicity. The nanosystems were characterized according to their physicochemical properties (among others, size, zeta potential, thermal properties), apparent aqueous solubility, and in vitro cytotoxicity. Interestingly, the nanocarrier obtained with the PLLA-PGA 50/50 weight ratio blend showed both the lowest size and the highest UA apparent solubility as well as the ability to decrease UA cytotoxicity towards human hepatocytes (HepG2 cells). This research opens new avenues for the effective utilization of these highly degradable and biocompatible PLLA-PGA blends as nanocarriers for reducing the cytotoxicity of usnic acid

    Antimicrobial ‘inks’ for 3D printing: block copolymer-silver nanoparticle composites synthesised using supercritical CO2

    Get PDF
    Silver nanoparticles (AgNP) are widely exploited for their effective antimicrobial activity against a range of pathogens. Their high efficacy in this regard has seen the global demand for AgNP in consumer products steadily increase in recent years, necessitating research into novel low environmental impact synthesis approaches. Here we present a new synthetic methodology to produce polymer-AgNP composite microparticles using supercritical carbon dioxide (scCO2) and avoiding use of any petrochemically derived solvents. Poly(methyl methacrylate)-poly(4-vinylpyridine) (PMMA-b-P4VP) block copolymers were synthesised via RAFT-mediated dispersion polymerisation in scCO2, with in situ thermal degradation of various amounts of a CO2-soluble silver complex. Selective interaction of the silver with the pyridinyl moieties of the block copolymer allowed the formation of AgNP, dispersed within the block copolymer microparticles, leading to homogeneous composites. The by-products of the reaction were also removed by extracting with a flow of CO2 to yield a clean dry product in a single process. The composites were found to be non-cytotoxic and proved to have good antimicrobial activity against two bacterial strains. Though no significant activity was seen for at least the first 24 hours, inhibition of bacterial growth afterwards proved to be extremely persistent, with inhibition observed even after 15 days. Finally, the microparticulate nature of the synthesised composites was exploited and tested for compatibility in the Laser Sintering (LS) 3D printing process. Composite microparticles were fused to produce solid objects, without aggregation of the AgNP. With further optimisation, these composites could prove to be an incredibly versatile ‘ink’ that may be used within additive manufacturing and 3D printing to rapidly produce bespoke medical devices with inherent antimicrobial activity
    • 

    corecore