12 research outputs found

    Genome Evolution of Two Genetically Homogeneous Infectious Bursal Disease Virus Strains During Passages in vitro and ex vivo in the Presence of a Mutagenic Nucleoside Analog

    Get PDF
    The avibirnavirus infectious bursal disease virus (IBDV) is responsible for a highly contagious and sometimes lethal disease of chickens (Gallus gallus). IBDV genetic variation is well-described for both field and live-attenuated vaccine strains, however, the dynamics and selection pressures behind this genetic evolution remain poorly documented. Here, genetically homogeneous virus stocks were generated using reverse genetics for a very virulent strain, rvv, and a vaccine-related strain, rCu-1. These viruses were serially passaged at controlled multiplicities of infection in several biological systems, including primary chickens B cells, the main cell type targeted by IBDV in vivo. Passages were also performed in the absence or presence of a strong selective pressure using the antiviral nucleoside analog 7-deaza-2â€Č-C-methyladenosine (7DMA). Next Generation Sequencing (NGS) of viral genomes after the last passage in each biological system revealed that (i) a higher viral diversity was generated in segment A than in segment B, regardless 7DMA treatment and viral strain, (ii) diversity in segment B was increased by 7DMA treatment in both viruses, (iii) passaging of IBDV in primary chicken B cells, regardless of 7DMA treatment, did not select cell-culture adapted variants of rvv, preserving its capsid protein (VP2) properties, (iv) mutations in coding and non-coding regions of rCu-1 segment A could potentially associate to higher viral fitness, and (v) a specific selection, upon 7DMA addition, of a Thr329Ala substitution occurred in the viral polymerase VP1. The latter change, together with Ala270Thr change in VP2, proved to be associated with viral attenuation in vivo. These results identify genome sequences that are important for IBDV evolution in response to selection pressures. Such information will help tailor better strategies for controlling IBDV infection in chickens

    Genesis and spread of multiple reassortants during the 2016/2017 H5 avian influenza epidemic in Eurasia

    Get PDF
    Highly pathogenic avian influenza (HPAI) viruses of the H5 A/goose/Guangdong/1/96 lineage can cause severe disease in poultry and wild birds, and occasionally in humans. In recent years, H5 HPAI viruses of this lineage infecting poultry in Asia have spilled over into wild birds and spread via bird migration to countries in Europe, Africa, and North America. In 2016/2017, this spillover resulted in the largest HPAI epidemic on record in Europe and was associated with an unusually high frequency of reassortments between H5 HPAI viruses and cocirculating low-pathogenic avian influenza viruses. Here, we show that the seven main H5 reassortant viruses had various combinations of gene segments 1, 2, 3, 5, and 6. Using detailed time-resolved phylogenetic analysis, most of these gene segments likely originated from wild birds and at dates and locations that corresponded to their hosts' migratory cycles. However, some gene segments in two reassortant viruses likely originated from domestic anseriforms, either in spring 2016 in east China or in autumn 2016 in central Europe. Our results demonstrate that, in addition to domestic anseriforms in Asia, both migratory wild birds and domestic anseriforms in Europe are relevant sources of gene segments for recent reassortant H5 HPAI viruses. The ease with which these H5 HPAI viruses reassort, in combination with repeated spillovers of H5 HPAI viruses into wild birds, increases the risk of emergence of a reassortant virus that persists in wild bird populations yet remains highly pathogenic for poultry

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    A lack of spatial genetic structure of Gymnothorax chilospilus (moray eel) suggests peculiar population functioning

    No full text
    International audienceMoray eels form a speciose lineage that belongs to Elopomorpha, a super-order with a worldwide distribution.As is the case for many anguilliform fish, moray eels are characterized by distinctive life history traits, notably aprolonged larval dispersal phase that determines settlement to distant reef habitats, thus influencing the spatialstructuring of their populations. They can be very abundant in coral reef ecosystems and represent major mesopredators,playing a crucial role in food webs. Yet, due to their elusive nature (i.e. cryptic behaviour, nocturnalactivity), these organisms are generally difficult to study and collect. To our knowledge, only a few studies performedover large geographical and phylogenetic scales have been conducted. We used a unique and cost-efficientsampling approach, involving forced regurgitation from sea snake predators, to collect large numbers of a widespreadmoray eel species (Gymnothorax chilospilus). When combined with the development of 11 new microsatellitemarkers, this efficient sampling technique allowed us to examine the genetic structure of Gymnothoraxpopulations occurring in the South Lagoon of New Caledonia. Analyses revealed a lack of genetic differentiationamong populations. This result echoes the strong genetic homogeneity of populations of their main predator, thesea snake. This convergence might result from a distinctive trait involved in population functioning of both morayeels and sea snakes, where immature individuals emerge from common breeding grounds and disperse over longdistances before settlement

    Management of Atrial Tachyarrhythmias: Benefits of Pacemaker Diagnostics

    No full text
    International audienceThe aim of this prospective multicenter study was to assess the clinical benefits of the Selection (Vitatron) pacemaker diagnostic functions (AF 1.0) in the management of AF. Forty patients (71 +/- 9 years of age), with documented AF and conventional pacing indications, received a Selection. The AF 1.0 function of the pacemaker was programmed to document the AF burden, onset, daily distribution, duration, premature atrial beats before onset, and mode of onset of the last 12 episodes for AF episodes exceeding 180 beats/min. By comparing patients' symptoms records, patient conventional assessment at follow-up and AF 1.0 data, the investigators evaluated the usefulness of AF 1.0 in AF management at 3- and 6-month follow-ups. Usefulness was defined as a change in arrhythmia management prompted by the disclosure of AF 1.0 data. AF recurrences were recorded in 71% of the follow-ups with symptoms reported by patients in only 16%. Thirty-nine percent of therapeutic changes based on conventional assessment were confirmed by AF 1.0 data, and in 61% of instances, the initial changes were modified by AF 1.0 data. Changes included pacing parameters in 56% of cases, AF prevention with pacing algorithms in 37%, and medical treatment in 7%. All investigators indicated that AF 1.0 was useful in all patients. The AF 1.0 diagnostic functions offered a unique documentation of AF in asymptomatic patients, and allowed therapeutic adjustments impossible otherwise

    Phylodynamic analysis of the highly pathogenic avian influenza H5N8 epidemic in France, 2016-2017

    No full text
    In 2016-2017, France experienced a devastating epidemic of highly pathogenic avian influenza (HPAI) H5N8, with more than 400 outbreaks reported in poultry farms. We analyzed the spatiotemporal dynamics of the epidemic using a structured-coalescent-based phylodynamic approach that combined viral genomic data (n = 196; one viral genome per farm) and epidemiological data. In the process, we estimated viral migration rates between departements (French administrative regions) and the temporal dynamics of the effective viral population size (Ne) in each departement. Viral migration rates quantify viral spread between departements and Ne is a population genetic measure of the epidemic size and, in turn, is indicative of the within-departement transmission intensity. We extended the phylodynamic analysis with a generalized linear model to assess the impact of multiple factors-including large-scale preventive culling and live-duck movement bans-on viral migration rates and Ne. We showed that the large-scale culling of ducks that was initiated on 4 January 2017 significantly reduced the viral spread between departements. No relationship was found between the viral spread and duck movements between departements. The within-departement transmission intensity was found to be weakly associated with the intensity of duck movements within departements. Together, these results indicated that the virus spread in short distances, either between adjacent departements or within departements. Results also suggested that the restrictions on duck transport within departements might not have stopped the viral spread completely. Overall, we demonstrated the usefulness of phylodynamics in characterizing the dynamics of a HPAI epidemic and assessing control measures. This method can be adapted to investigate other epidemics of fast-evolving livestock pathogens.ISSN:1865-1674ISSN:1865-168

    P2Y13 Receptor is Critical for Reverse Cholesterol Transport

    No full text
    A major atheroprotective functionality of high-density lipoproteins (HDLs) is to promote "reverse cholesterol transport" (RCT). In this process, HDLs mediate the efflux and transport of cholesterol from peripheral cells and its subsequent transport to the liver for further metabolism and biliary excretion. We have previously demonstrated in cultured hepatocytes that P2Y(13) (purinergic receptor P2Y, G protein coupled, 13) activation is essential for HDL uptake but the potential of P2Y(13) as a target to promote RCT has not been documented. Here, we show that P2Y(13)-deficient mice exhibited a decrease in hepatic HDL cholesterol uptake, hepatic cholesterol content, and biliary cholesterol output, although their plasma HDL and other lipid levels were normal. These changes translated into a substantial decrease in the rate of macrophage-to-feces RCT. Therefore, hallmark features of RCT are impaired in P2Y(13)-deficient mice. Furthermore, cangrelor, a partial agonist of P2Y(13), stimulated hepatic HDL uptake and biliary lipid secretions in normal mice and in mice with a targeted deletion of scavenger receptor class B type I (SR-BI) in liver (hypomSR-BI- knockout(liver)) but had no effect in P2Y(13) knockout mice, which indicate that P2Y(13)-mediated HDL uptake pathway is independent of SR-BI mediated HDL selective cholesteryl ester uptake. Conclusion: These results establish P2Y(13) as an attractive novel target for modulating RCT and support the emerging view that steady-state plasma HDL levels do not necessarily reflect the capacity of HDL to promote RCT. (HEPATOLOGY 2010;52:1477-1483

    Has Epizootic Become Enzootic? Evidence for a Fundamental Change in the Infection Dynamics of Highly Pathogenic Avian Influenza in Europe, 2021

    No full text
    Phylogenetic evidence from the recent resurgence of high-pathogenicity avian influenza (HPAI) virus subtype H5N1, clade 2.3.4.4b, observed in European wild birds and poultry since October 2021, suggests at least two different and distinct reservoirs. We propose contrasting hypotheses for this emergence: (i) resident viruses have been maintained, presumably in wild birds, in northern Europe throughout the summer of 2021 to cause some of the outbreaks that are part of the most recent autumn/winter 2021 epizootic, or (ii) further virus variants were reintroduced by migratory birds, and these two sources of reintroduction have driven the HPAI resurgence. Viruses from these two principal sources can be distinguished by their hemagglutinin genes, which segregate into two distinct sublineages (termed B1 and B2) within clade 2.3.4.4b, as well as their different internal gene compositions. The evidence of enzootic HPAI virus circulation during the summer of 2021 indicates a possible paradigm shift in the epidemiology of HPAI in Europe

    Taxonomy of the order Mononegavirales: update 2016

    No full text
    In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV)
    corecore