71 research outputs found

    LILAC pilot study : effects of metformin on mTOR activation and HIV reservoir persistence during antiretroviral therapy

    Get PDF
    Background: Chronic inflammation and residual HIV transcription persist in people living with HIV (PLWH) receiving antiretroviral therapy (ART), thus increasing the risk of developing non-AIDS co-morbidities. The mechanistic target of rapamycin (mTOR) is a key regulator of cellular metabolism and HIV transcription, and therefore represents an interesting novel therapeutic target. Methods: The LILAC pilot clinical trial, performed on non-diabetic ART-treated PLWH with CD4+ /CD8+ T-cell ratios <0.8, evaluated the effects of metformin (12 weeks oral administration; 500-850 mg twice daily), an indirect mTOR inhibitor, on the dynamics of immunological/virological markers and changes in mTOR activation/phosphorylation in blood collected at Baseline, Week 12, and 12 weeks after metformin discontinuation (Week 24) and sigmoid colon biopsies (SCB) collected at Baseline and Week 12. Findings: CD4+ T-cell counts, CD4+ /CD8+ T-cell ratios, plasma markers of inflammation/gut damage, as well as levels of cell-associated integrated HIV-DNA and HIV-RNA, and transcriptionally-inducible HIV reservoirs, underwent minor variations in the blood in response to metformin. The highest levels of mTOR activation/ phosphorylation were observed in SCB at Baseline. Consistently, metformin significantly decreased CD4+ Tcell infiltration in the colon, as well as mTOR activation/phosphorylation, especially in CD4+ T-cells expressing the Th17 marker CCR6. Also, metformin decreased the HIV-RNA/HIV-DNA ratios, a surrogate marker of viral transcription, in colon-infiltrating CD4+ T-cells of 8/13 participants

    CXCL13 as a Biomarker of Immune Activation During Early and Chronic HIV Infection

    Get PDF
    Background: CXCL13 is preferentially secreted by Follicular Helper T cells (TFH) to attract B cells to germinal centers. Plasma levels of CXCL13 have been reported to be elevated during chronic HIV-infection, however there is limited data on such elevation during early phases of infection and on the effect of ART. Moreover, the contribution of CXCL13 to disease progression and systemic immune activation have been partially defined. Herein, we assessed the relationship between plasma levels of CXCL13 and systemic immune activation.Methods: Study samples were collected in 114 people living with HIV (PLWH) who were in early (EHI) or chronic (CHI) HIV infection and 35 elite controllers (EC) compared to 17 uninfected controls (UC). A subgroup of 11 EHI who initiated ART and 14 who did not were followed prospectively. Plasma levels of CXCL13 were correlated with CD4 T cell count, CD4/CD8 ratio, plasma viral load (VL), markers of microbial translocation [LPS, sCD14, and (1→3)-β-D-Glucan], markers of B cell activation (total IgG, IgM, IgA, and IgG1-4), and inflammatory/activation markers like IL-6, IL-8, IL-1β, TNF-α, IDO-1 activity, and frequency of CD38+HLA-DR+ T cells on CD4+ and CD8+ T cells.Results: Plasma levels of CXCL13 were elevated in EHI (127.9 ± 64.9 pg/mL) and CHI (229.4 ± 28.5 pg/mL) compared to EC (71.3 ± 20.11 pg/mL), and UC (33.4 ± 14.9 pg/mL). Longitudinal analysis demonstrated that CXCL13 remains significantly elevated after 14 months without ART (p &lt; 0.001) and was reduced without normalization after 24 months on ART (p = 0.002). Correlations were observed with VL, CD4 T cell count, CD4/CD8 ratio, LPS, sCD14, (1→3)-β-D-Glucan, total IgG, TNF-α, Kynurenine/Tryptophan ratio, and frequency of CD38+HLA-DR+ CD4 and CD8 T cells. In addition, CMV+ PLWH presented with higher levels of plasma CXCL13 than CMV- PLWH (p = 0.005).Conclusion: Plasma CXCL13 levels increased with HIV disease progression. Early initiation of ART reduces plasma CXCL13 and B cell activation without normalization. CXCL13 represents a novel marker of systemic immune activation during early and chronic HIV infection and may be used to predict the development of non-AIDS events

    NK Cells in Protection from HIV Infection

    No full text
    Some people, known as HIV-exposed seronegative (HESN) individuals, remain uninfected despite high levels of exposure to HIV. Understanding the mechanisms underlying their apparent resistance to HIV infection may inform strategies designed to protect against HIV infection. Natural Killer (NK) cells are innate immune cells whose activation state depends on the integration of activating and inhibitory signals arising from cell surface receptors interacting with their ligands on neighboring cells. Inhibitory NK cell receptors use a subset of major histocompatibility (MHC) class I antigens as ligands. This interaction educates NK cells, priming them to respond to cells with reduced MHC class I antigen expression levels as occurs on HIV-infected cells. NK cells can interact with both autologous HIV-infected cells and allogeneic cells bearing MHC antigens seen as non self by educated NK cells. NK cells are rapidly activated upon interacting with HIV-infected or allogenic cells to elicit anti-viral activity that blocks HIV spread to new target cells, suppresses HIV replication, and kills HIV-infected cells before HIV reservoirs can be seeded and infection can be established. In this manuscript, we will review the epidemiological and functional evidence for a role for NK cells in protection from HIV infection

    Expression of ligands for activating natural killer cell receptors on cell lines commonly used to assess natural killer cell function

    No full text
    Abstract Background Natural killer cell responses to virally-infected or transformed cells depend on the integration of signals received through inhibitory and activating natural killer cell receptors. Human Leukocyte Antigen null cells are used in vitro to stimulate natural killer cell activation through missing-self mechanisms. On the other hand, CEM.NKr.CCR5 cells are used to stimulate natural killer cells in an antibody dependent manner since they are resistant to direct killing by natural killer cells. Both K562 and 721.221 cell lines lack surface major histocompatibility compatibility complex class Ia ligands for inhibitory natural killer cell receptors. Previous work comparing natural killer cell stimulation by K562 and 721.221 found that they stimulated different frequencies of natural killer cell functional subsets. We hypothesized that natural killer cell function following K562, 721.221 or CEM.NKr.CCR5 stimulation reflected differences in the expression of ligands for activating natural killer cell receptors. Results K562 expressed a higher intensity of ligands for Natural Killer G2D and the Natural Cytotoxicity Receptors, which are implicated in triggering natural killer cell cytotoxicity. 721.221 cells expressed a greater number of ligands for activating natural killer cell receptors. 721.221 expressed cluster of differentiation 48, 80 and 86 with a higher mean fluorescence intensity than did K562. The only ligands for activating receptor that were detected on CEM.NKr.CCR5 cells at a high intensity were cluster of differentiation 48, and intercellular adhesion molecule-2. Conclusions The ligands expressed by K562 engage natural killer cell receptors that induce cytolysis. This is consistent with the elevated contribution that the cluster of differentiation 107a function makes to total K562 induced natural killer cell functionality compared to 721.221 cells. The ligands expressed on 721.221 cells can engage a larger number of activating natural killer cell receptors, which may explain their ability to activate a larger frequency of these cells to become functional and secrete cytokines. The few ligands for activating natural killer cell receptors expressed by CEM.NKr.CCR5 may reduce their ability to activate natural killer cells in an antibody independent manner explaining their relative resistance to direct natural killer cell cytotoxicity

    Les cellules dendritiques transfectées avec de l’ARN messager

    No full text
    Les cellules dendritiques, sentinelles du systèmeimmunitaire, sont des cellules spécialisées dans la capture, l’apprêtement et la présentation d’antigènes. Ces cellules ont un rôle central dans la réponse immunitaire car ce sont les seules capables d’activer les lymphocytes T naïfs et de déclencher une réponse immune primaire. La possibilité de les différencier et de les manipuler génétiquement ex vivo en fait un outil de choix pour stimuler des réponses immunitaires contre des antigènes d’intérêt. C’est pourquoi les cellules dendritiques sont largement utilisées en immunothérapie anti-tumorale et anti-infectieuse.Récemment, plusieurs études ont montré que des cellules dendritiques transfectées avec des ARNm autologues tumoraux ou viraux sont capables d’induire une réponse immunitaire spécifique et efficace associée à une réponse cliniquebénéfique. Cette stratégie de vaccination très prometteuse offre une approche thérapeutique applicable à de nombreuses pathologies et, de plus, adaptée à chaque patient. Cet article fait le point sur les progrès actuels réalisés en immunothérapie anti-tumorale et anti-VIH(virus de l’immunodéficience humaine)

    GĂ©nie urbain, territoires et information

    No full text
    Gabriel Dupuy und Philippe Ménerault, Städtische Versorgungseinrichtungen, Regionen und Information Eine Zusammenfassung der Untersuchungen über die städtischen Versorgungseinrichtungen läßt als Gegenstand der Stadtversorgung die technische Verknüpfung zwischen Region und Unternehmen erscheinen. Die geographische Verwaltungseinheit deckt sich nicht mit dem Versorgungsnetz, wie auch Industrierevier und Stadtregion sich nicht decken. Aber die Stadtversorgung kondensiert modellhaft eine mögliche Beziehung zwischen Region und Macht.Gabriel Dupuy and Philippe Ménerault, Urban engineering, territories and information To synthesize research work on urban engineering leads to the articulation between territory and society, using such techniques as the objectif of urban engineering. Administrative and technical territoriality of the network differ, in the same way as industrial and urban territories. But urban engineering has condensed to a hard and stable core a model of relationship between power and territory.Synthétiser les travaux de recherche sur le génie urbain, conduit à désigner l'articulation entre territoire et société par les techniques comme l'objet du génie urbain. Territorialité administrative et territorialité technique de réseau diffèrent, comme diffèrent les territoires de l'industrie et de l'urbain. Mais le génie urbain condense en un noyau dur et stable un modèle de rapport entre territoire et pouvoir.Gabriel Dupuy y Philippe Ménerault, Ingeniería urbana, territorios y formation Según aparece al tratar de sintetizar los trabajos de investigación sobre la ingenieria urbana, el objeto de ésta es la de asegurar la articulación entre territorio y sociedad por medio de las técnicas. Territorialidad administrativa y territorialidad técnica de red difieren, como difieren los territorios de la industria y de lo urbano. Pero la ingenieria urbana condensa en un núcleo firme y estable un modelo de relación entre territorio y poder.Dupuy Gabriel, Menerault Philippe, Besson P., Chatzis K., Laterrasse Jean, Lefevre Christian, Lozada F., Ribeill Georges, Scherrer Franck, Veltz. Génie urbain, territoires et information. In: Les Annales de la recherche urbaine, N°44-45, 1989. Pratiques et professions. pp. 213-223

    NOD2 Agonism Counter-Regulates Human Type 2 T Cell Functions in Peripheral Blood Mononuclear Cell Cultures: Implications for Atopic Dermatitis

    No full text
    Atopic dermatitis (AD) is known as a skin disease; however, T cell immunopathology found in blood is associated with its severity. Skin Staphylococcus aureus (S. aureus) and associated host–pathogen dynamics are important to chronic T helper 2 (Th2)-dominated inflammation in AD, yet they remain poorly understood. This study sought to investigate the effects of S. aureus-derived molecules and skin alarmins on human peripheral blood mononuclear cells, specifically testing Th2-type cells, cytokines, and chemokines known to be associated with AD. We first show that six significantly elevated Th2-related chemokine biomarkers distinguish blood from adult AD patients compared to healthy controls ex vivo; in addition, TARC/CCL17, LDH, and PDGF-AA/AB correlated significantly with disease severity. We then demonstrate that these robust AD-associated biomarkers, as well as associated type 2 T cell functions, are readily reproduced from healthy blood mononuclear cells exposed to the alarmin TSLP and the S. aureus superantigen SEB in a human in vitro model, including IL-13, IL-5, and TARC secretion as well as OX-40-expressing activated memory T cells. We further show that the agonism of nucleotide-binding oligomerization domain-containing protein (NOD)2 inhibits this IL-13 secretion and memory Th2 and Tc2 cell functional activation while inducing significantly increased pSTAT3 and IL-6, both critical for Th17 cell responses. These findings identify NOD2 as a potential regulator of type 2 immune responses in humans and highlight its role as an endogenous inhibitor of pathogenic IL-13 that may open avenues for its therapeutic targeting in AD

    Antibody-Dependent Cellular Cytotoxicity-Competent Antibodies against HIV-1-Infected Cells in Plasma from HIV-Infected Subjects

    No full text
    HIV Env-specific nonneutralizing Abs (NnAbs) able to mediate ADCC have been implicated in protection from HIV infection. However, Env-specific NnAbs have the capacity to support ADCC of both HIV-infected and HIV-uninfected bystander cells, potentially leading to misinterpretations when the assay used to measure ADCC does not distinguish between the two target cell types present in HIV cultures. Using a novel ADCC assay, which simultaneously quantifies the killing activity of Env-specific Abs on both infected and uninfected bystander cells, we observed that only a minority of Env-specific Abs in HIV+ plasma mediated ADCC of genuinely HIV-infected cells displaying Env in its native closed conformation. This assay can be used for the development of vaccine strategies aimed at eliciting Env-specific Ab responses capable of controlling HIV infection.Measuring Envelope (Env)-specific antibody (Ab)-dependent cellular cytotoxicity (ADCC)-competent Abs in HIV+ plasma is challenging because Env displays distinctive epitopes when present in a native closed trimeric conformation on infected cells or in a CD4-bound conformation on uninfected bystander cells. We developed an ADCC model which distinguishes Env-specific ADCC-competent Abs based on their capacity to eliminate infected, bystander, or Env rgp120-coated cells as a surrogate for shed gp120 on bystander cells. A panel of monoclonal Abs (MAbs), used to opsonize these target cells, showed that infected cells were preferentially recognized/eliminated by MAbs to CD4 binding site, V3 loop, and viral spike epitopes whereas bystander/coated cells were preferentially recognized/eliminated by Abs to CD4-induced (CD4i) epitopes. In HIV-positive (HIV+) plasma, Env-specific Abs recognized and supported ADCC of infected cells, though a majority were directed toward CD4i epitopes on bystander cells. For ADCC activity to be effective in HIV control, ADCC-competent Abs need to target genuinely infected cells
    • …
    corecore