3,794 research outputs found

    Sliding lubricated anisotropic rough surfaces

    Get PDF
    The object of this paper is to study the effects of lubricant film flow, pressurized and sheared between two parallel rough surfaces in sliding motion. The influence of microscopic surface roughness on lubricant film flow macroscopic behavior is described through five nondimensional parameters called flow factors. These macroscopic transport parameters are related to the local geometry of apertures and surfaces. Short- and long-range-correlated surface roughnesses display very different macroscopic behaviors when surfaces are close to contact. These behaviors are related to underlying surface roughness parameters such as the correlation length and the self-affine Hurst exponent. The problem is numerically studied, and results are compared to some analytical asymptotic results

    Averaged Reynolds Equation for Flows between Rough Surfaces in Sliding Motion

    Get PDF
    The flow between rough surfaces in sliding motion with contacts between these surfaces, is analyzed through the volume averaging method. Assuming a Reynolds (lubrication) approximation at the roughness scale, an average flow model is obtained combining spatial and time average. Time average, which is often omitted in previous works, is specially discussed. It is shown that the effective transport coefficients, traditionally termed ‘flow factors’ in the lubrication literature, that appear in the average equations can be obtained from the solution to two closure problems. This allows for the numerical determination of flow factors on firmer bases and sheds light on some arguments to the literature. Moreover, fluid flows through fractures form an important subset of problems embodied in the present analysis, for which macroscopisation is given

    Intermittency in the homopolar disk-dynamo

    Get PDF
    We study a modified Bullard dynamo and show that this system is equivalent to a nonlinear oscillator subject to a multiplicative noise. The stability analysis of this oscillator is performed. Two bifurcations are identified, first towards an `` intermittent\rq\rq state where the absorbing (non-dynamo) state is no more stable but the most probable value of the amplitude of the oscillator is still zero and secondly towards a `` turbulent\rq\rq (dynamo) state where it is possible to define unambiguously a (non-zero) most probable value around which the amplitude of the oscillator fluctuates. The bifurcation diagram of this system exhibits three regions which are analytically characterized

    Bankruptcy Risk, Product Market Competition and Horizontal Mergers

    Get PDF
    Debt, Bankruptcy, Horizontal Merger, Competition Policy, Oligopoly.

    Micromechanical investigation of the influence of defects in high cycle fatigue

    Get PDF
    This study aims to analyse the influence of geometrical defects (notches and holes) on the high cycle fatigue behaviour of an electrolytic copper based on finite element simulations of 2D polycrystalline aggregates. In order to investigate the role of each source of anisotropy on the mechanical response at the grain scale, three different material constitutive models are assigned successively to the grains: isotropic elasticity, cubic elasticity and crystal plasticity in addition to the cubic elasticity. The significant influence of the elastic anisotropy on the mechanical response of the grains is highlighted. When considering smooth microstructures, the crystal plasticity have has a slight effect in comparison with the cubic elasticity influence. However, in the case of notched microstructures, it has been shown that the influence of the plasticity is no more negligible. Finally, the predictions of three fatigue criteria are analysed. Their ability to predict the defect size effect on the fatigue strength is evaluated thanks to a comparison with experimental data from the literature

    The atmospheric chemistry of the warm Neptune GJ 3470b: influence of metallicity and temperature on the CH4/CO ratio

    Full text link
    Current observation techniques are able to probe the atmosphere of some giant exoplanets and get some clues about their atmospheric composition. However, the chemical compositions derived from observations are not fully understood, as for instance in the case of the CH4/CO abundance ratio, which is often inferred different from what has been predicted by chemical models. Recently, the warm Neptune GJ3470b has been discovered and because of its close distance from us and high transit depth, it is a very promising candidate for follow up characterisation of its atmosphere. We study the atmospheric composition of GJ3470b in order to compare with the current observations of this planet, to prepare the future ones, but also as a typical case study to understand the chemical composition of warm (sub-)Neptunes. The metallicity of such atmospheres is totally uncertain, and vary probably to values up to 100x solar. We explore the space of unknown parameters to predict the range of possible atmospheric compositions. Within the parameter space explored we find that in most cases methane is the major carbon-bearing species. We however find that in some cases, typically for high metallicities with a sufficiently high temperature the CH4/CO abundance ratio can become lower than unity, as suggested by some multiwavelength photometric observations of other warm (sub-)Neptunes, such as GJ1214b and GJ436b. As for the emission spectrum of GJ3470b, brightness temperatures at infrared wavelengths may vary between 400 and 800K depending on the thermal profile and metallicity. Combined with a hot temperature profile, a substantial enrichment in heavy elements by a factor of 100 with respect to the solar composition can shift the carbon balance in favour of carbon monoxide at the expense of CH4. Nevertheless, current observations of this planet do not allow yet to determine which model is more accurate.Comment: 12 pages, 8 figures, accepted in Astronomy & Astrophysic

    The Next 700 Impossibility Results in Time-Varying Graphs

    Get PDF
    We address highly dynamic distributed systems modeled by time-varying graphs (TVGs). We interest in proof of impossibility results that often use informal arguments about convergence. First, we provide a distance among TVGs to define correctly the convergence of TVG sequences. Next, we provide a general framework that formally proves the convergence of the sequence of executions of any deterministic algorithm over TVGs of any convergent sequence of TVGs. Finally, we illustrate the relevance of the above result by proving that no deterministic algorithm exists to compute the underlying graph of any connected-over-time TVG, i.e., any TVG of the weakest class of long-lived TVGs
    corecore