1,246 research outputs found

    I.C.E.: An Ultra-Cold Atom Source for Long-Baseline Interferometric Inertial Sensors in Reduced Gravity

    Full text link
    The accuracy and precision of current atom-interferometric inertialsensors rival state-of-the-art conventional devices using artifact-based test masses . Atomic sensors are well suited for fundamental measurements of gravito-inertial fields. The sensitivity required to test gravitational theories can be achieved by extending the baseline of the interferometer. The I.C.E. (Interf\'erom\'etrie Coh\'erente pour l'Espace) interferometer aims to achieve long interrogation times in compact apparatus via reduced gravity. We have tested a cold-atom source during airplane parabolic flights. We show that this environment is compatible with free-fall interferometric measurements using up to 4 second interrogation time. We present the next-generation apparatus using degenerate gases for low release-velocity atomic sources in space-borne experiments

    The Withdrawal Assessment Tool–1 (WAT–1): An Assessment Instrument for Monitoring Opioid and Benzodiazepine Withdrawal Symptoms in Pediatric Patients

    Get PDF
    Objective: To develop and test the validity and reliability of the Withdrawal Assessment Tool–1 for monitoring opioid and benzodiazepine withdrawal symptoms in pediatric patients. Design: Prospective psychometric evaluation. Pediatric critical care nurses assessed eligible at-risk pediatric patients for the presence of 19 withdrawal symptoms and rated the patient’s overall withdrawal intensity using a Numeric Rating Scale where zero indicated no withdrawal and 10 indicated worst possible withdrawal. The 19 symptoms were derived from the Opioid and Benzodiazepine Withdrawal Score, the literature and expert opinion. Setting: Two pediatric intensive care units in university-affiliated academic children’s hospitals. Patients: Eighty-three pediatric patients, median age 35 mos (interquartile range: 7 mos−10 yrs), recovering from acute respiratory failure who were being weaned from more than 5 days of continuous infusion or round-the-clock opioid and benzodiazepine administration. Interventions: Repeated observations during analgesia and sedative weaning. A total of 1040 withdrawal symptom assessments were completed, with a median (interquartile range) of 11 (6–16) per patient over 6.6 (4.8−11) days. Measurements and Main Results: Generalized linear modeling was used to analyze each symptom in relation to withdrawal intensity ratings, adjusted for site, subject, and age group. Symptoms with high redundancy or low levels of association with withdrawal intensity ratings were dropped, resulting in an 11-item (12-point) scale. Concurrent validity was indicated by high sensitivity (0.872) and specificity (0.880) for Withdrawal Assessment Tool–1 \u3e 3 predicting Numeric Rating Scale \u3e 4. Construct validity was supported by significant differences in drug exposure, length of treatment and weaning from sedation, length of mechanical ventilation and intensive care unit stay for patients with Withdrawal Assessment Tool–1 scores \u3e 3 compared with those with lower scores. Conclusions: The Withdrawal Assessment Tool–1 shows excellent preliminary psychometric performance when used to assess clinically important withdrawal symptoms in the pediatric intensive care unit setting. Further psychometric evaluation in diverse at-risk groups is needed

    Tracing baculovirus AcMNPV infection using a real time method based on ANCHORTM DNA labeling technology

    Get PDF
    Many steps in the baculovirus life cycle, from initial ingestion to the subsequent infection of all larval cells, remain largely unknown; primarily because it has hitherto not been possible to follow individual genomes and their lineages. Use of ANCHORTM technology allows a high intensity fluorescent labelling of DNA. When applied to a virus genome, it is possible to follow individual particles, and the overall course of infection. This technology has been adapted to enable labelling of the baculovirus Autographa californica Multiple NucleoPolyhedroVirus genome, as a first step to its application to other baculoviruses. AcMNPV was modified by inserting the two components of ANCHORTM: a specific DNA-binding protein fused to a fluorescent reporter, and the corresponding DNA recognition sequence. The resulting modified virus was stable, infectious, and replicated correctly in Spodoptera frugiperda 9 (Sf9) cells and in vivo. Both budded viruses and occlusion bodies were clearly distinguishable, and infecting cells or larvae allowed the infection process to be monitored in living cells or tissues. The level of fluorescence in the culture medium of infected cells in vitro showed a good correlation with the number of infectious budded viruses. A cassette that can be used in other baculoviruses has been designed. Altogether our results introduce for the first time the generation of autofluorescent baculovirus and their application to follow infection dynamics directly in living cells or tissues
    • …
    corecore