11 research outputs found

    DHA production by Schizochytrium limacinum SR-21 using crude glycerol as carbon source

    Get PDF
    This study investigates the potential of low-cost substrates (crude glycerol) usage as carbon source for obtaining docosahexaenoic acid (DHA), through fermentation of the Schizochytrium limacinum SR-21 microalga. The fermentations were conducted on flask and bioreactor scale. To quantify the amount of DHA obtained, the amount of biomass and lipid production were monitored and simultaneously running fermentative processes on two substrates were carried out. In both processes (flask and bioreactor) the highest amount of dry biomass (DB) was obtained by using glucose as carbon source (6.9 g L -1 in flask and 10.65 g L -1 in bioreactor). Although the amount of DB was higher on blank substrate, the level of DHA from total lipids content was higher (27.69 % in flask and 36.06% in bioreactor) in the biomass obtained on glycerol as primal carbon source. The highest quantity of DHA was obtained by using crude glycerol as carbon source for the microalgae when carrying out the process on bioreactor scale, which allowed us to control the pH on a set value of 7.

    Fatty acids in berry lipids of six sea buckthorn (<it>Hippophae rhamnoides</it> L., subspecies <it>carpatica</it>) cultivars grown in Romania

    Get PDF
    Abstract Background A systematic mapping of the phytochemical composition of different sea buckthorn (Hippophae rhamnoides L.) fruit subspecies is still lacking. No data relating to the fatty acid composition of main lipid fractions from the berries of ssp. carpatica (Romania) have been previously reported. Results The fatty acid composition of the total lipids (oils) and the major lipid fractions (PL, polar lipids; FFA, free fatty acids; TAG, triacylglycerols and SE, sterol esters) of the oils extracted from different parts of six sea buckthorn berry subspecies (ssp. carpatica) cultivated in Romania were investigated using the gas chromatography-mass spectrometry (GC-MS). The dominating fatty acids in pulp/peel and whole berry oils were palmitic (23-40%), oleic (20-53%) and palmitoleic (11-27%). In contrast to the pulp oils, seed oils had higher amount of polyunsaturated fatty acids (PUFAs) (65-72%). The fatty acid compositions of TAGs were very close to the compositions of corresponding seed and pulp oils. The major fatty acids in PLs of berry pulp/peel oils were oleic (20-40%), palmitic (17-27%), palmitoleic (10-22%) and linoleic (10%-20%) acids, whereas in seeds PLs, PUFAs prevailed. Comparing with the other lipid fractions the SEs had the highest contents of saturated fatty acids (SFAs). The fatty acid profiles of the FFA fractions were relatively similar to those of TAGs. Conclusions All parts of the analyzed sea buckthorn berry cultivars (ssp. carpatica) exhibited higher oil content then the other European or Asiatic sea buckthorn subspecies. Moreover, the pulp/peel oils of ssp. carpatica were found to contain high levels of oleic acid and slightly lower amounts of linoleic and α-linolenic acids. The studied cultivars of sea buckthorn from Romania have proven to be potential sources of valuable oils.</p

    Modeling tool using neural networks for l(+)-lactic acid production by pellet-form Rhizopus oryzae NRRL 395 on biodiesel crude glycerol

    No full text
    Abstract Most chemical reactions produce unwanted by-products. In an effort to reduce environmental problems these by-products could be used to produce valuable organic chemicals. In biodiesel industry a huge amount of glycerol is generated, approximately 10% of the final product. The research group from University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca developed opportunities to produce l(+) lactic acid from the glycerol. The team is using the Rhizopus oryzae NRRL 395 bacteria for the fermentation of the glycerol. The purpose of the research is to improve the production of l(+) lactic acid in order to optimize the process. A predictive model obtained by neural networks is useful in this case. The main objective of the present work is to present the developed user-friendly application useful in modeling this fermentation process, in order to be used by people who are inexperienced with neural networks or specific software. Besides the interface for training of a new neural network in order to develop the model in some characteristic condition, the software also provides an interface for visualization of the results, useful in interpretation and as a tool for prediction

    Fatty acid composition of lipids in pot marigold (<it>Calendula officinalis</it> L.) seed genotypes

    No full text
    Abstract Background Calendula officinalis L. (pot marigold) is an annual aromatic herb with yellow or golden-orange flowers, native to the Mediterranean climate areas. Their seeds contain significant amounts of oil (around 20%), of which about 60% is calendic acid. For these reasons, in Europe concentrated research efforts have been directed towards the development of pot marigold as an oilseed crop for industrial purposes. Results The oil content and fatty acid composition of major lipid fractions in seeds from eleven genotypes of pot marigold (Calendula officinalis L.) were determined. The lipid content of seeds varied between 13.6 and 21.7 g oil/100 g seeds. The calendic and linoleic acids were the two dominant fatty acids in total lipid (51.4 to 57.6% and 28.5 to 31.9%) and triacylglycerol (45.7 to 54.7% and 22.6 to 29.2%) fractions. Polar lipids were also characterised by higher unsaturation ratios (with the PUFAs content between 60.4 and 66.4%), while saturates (consisted mainly of palmitic and very long-chain saturated fatty acids) were found in higher amounts in sterol esters (ranging between 49.3 and 55.7% of total fatty acids). Conclusions All the pot marigold seed oils investigated contain high levels of calendic acid (more than 50% of total fatty acids), making them favorable for industrial use. The compositional differences between the genotypes should be considered when breeding and exploiting the pot marigold seeds for nutraceutical and pharmacological purposes.</p

    Predominant and Secondary Pollen Botanical Origins Influence the Carotenoid and Fatty Acid Profile in Fresh Honeybee-Collected Pollen

    No full text
    Total and individual carotenoids, fatty acid composition of total lipids, and main lipid classes of 16 fresh bee-collected pollen samples from Romania were determined by high-performance liquid chromatography with photodiode array detection and capillary gas chromatography with mass detection. Analyzed samples were found rich in lutein, whereas β-criptoxanthin and β-carotene were present in a wide range of amounts correlated with predominant botanical origin of the samples. High amounts of lutein were correlated with the presence of Callendula officinalis, Taraxacum officinale and Anthylis sp. The highest amount of total lipids was found in samples where pollen from Brassica sp. was predominant. Lipid classes were dominated by polyunsaturated fatty acids. Saturated fatty acids were determined in variable amounts. Lipid and carotenoid contents present great variability, explained by the various botanical species present in the samples
    corecore