7 research outputs found

    Harnessing Useful Rhizosphere Microorganisms for Nematode Control

    Get PDF
    Nematodes are very diverse and parasitize various plants including vegetables, and their management is of concern. Biological control of nematodes provides an environmentally friendly management option and there are various micro‐soil‐borne organisms which can be considered for this purpose. The primary goal of this chapter is to provide a review on the progress made so far, in application of biological control agents in nematode management in vegetables, cereals, and root and tuber crops. This chapter will be divided into five (5) sections: (1) herbivore‐induced plant volatiles, (2) root exudates and nematode control, (3) inhibitory metabolites in bacteria for nematode management, (4) fungi and symbiotic reprogramming in host cells, and (5) fungi antagonists of nematodes

    Characterization of Mycosphaerellaceae species associated with citrus greasy spot in Panama and Spain

    Full text link
    [EN] Greasy spot of citrus, caused by Zasmidium citri-griseum (= Mycosphaerella citri), is widely distributed in the Caribbean Basin, inducing leaf spots, premature defoliation, and yield loss. Greasy spot-like symptoms were frequently observed in humid citrus-growing regions in Panama as well as in semi-arid areas in Spain, but disease aetiology was unknown. Citrus-growing areas in Panama and Spain were surveyed and isolates of Mycosphaerellaceae were obtained from citrus greasy spot lesions. A selection of isolates from Panama (n = 22) and Spain (n = 16) was assembled based on their geographical origin, citrus species, and affected tissue. The isolates were characterized based on multi-locus DNA (ITS and EF-1 alpha) sequence analyses, morphology, growth at different temperatures, and independent pathogenicity tests on the citrus species most affected in each country. Reference isolates and sequences were also included in the analysis. Isolates from Panama were identified as Z. citri-griseum complex, and others from Spain attributed to Amycosphaerella africana. Isolates of the Z. citri-griseum complex had a significantly higher optimal growth temperature (26.8 degrees C) than those of A. africana (19.3 degrees C), which corresponded well with their actual biogeographical range. The isolates of the Z. citri-griseum complex from Panama induced typical greasy spot symptoms in 'Valencia' sweet orange plants and the inoculated fungi were reisolated. No symptoms were observed in plants of the 'Ortanique' tangor inoculated with A. africana. These results demonstrate the presence of citrus greasy spot, caused by Z. citri-griseum complex, in Panama whereas A. africana was associated with greasy spot-like symptoms in Spain.Research was partially funded by 'Programa de Formacion de los INIA Iberoamerica' and INIA RTA2010-00105-00-00-FEDER to Vidal Aguilera Cogley.. We thank J. Martinez-Minaya (UV) for assistance with INLAAguilera-Cogley, VA.; Berbegal Martinez, M.; Català, S.; Collison Brentu, F.; Armengol Fortí, J.; Vicent Civera, A. (2017). Characterization of Mycosphaerellaceae species associated with citrus greasy spot in Panama and Spain. PLoS ONE. 12(12):1-19. https://doi.org/10.1371/journal.pone.0189585S1191212Crous, P. W., Summerell, B. A., Carnegie, A. J., Wingfield, M. J., Hunter, G. C., Burgess, T. I., … Groenewald, J. Z. (2009). Unravelling Mycosphaerella: do you believe in genera? Persoonia - Molecular Phylogeny and Evolution of Fungi, 23(1), 99-118. doi:10.3767/003158509x479487Mondal, S. N., & Timmer, L. W. (2006). Greasy Spot, a Serious Endemic Problem for Citrus Production in the Caribbean Basin. Plant Disease, 90(5), 532-538. doi:10.1094/pd-90-0532Whiteside, J. O. (1970). Etiology and Epidemiology of Citrus Greasy Spot. Phytopathology, 60(10), 1409. doi:10.1094/phyto-60-1409Huang, F., Groenewald, J. Z., Zhu, L., Crous, P. W., & Li, H. (2015). Cercosporoid diseases of Citrus. Mycologia, 107(6), 1151-1171. doi:10.3852/15-059Wellings, C. R. (1981). Pathogenicity of fungi associated with citrus greasy spot in New South Wales. Transactions of the British Mycological Society, 76(3), 495-499. doi:10.1016/s0007-1536(81)80080-0Marco, G. M. (1986). A Disease Similar to Greasy Spot but of Unknown Etiology on Citrus Leaves in Argentina. Plant Disease, 70(11), 1074a. doi:10.1094/pd-70-1074aVidal Aguilera-Cogley, & Antonio Vicent. (2015). FUNGAL DISEASES OF CITRUS IN PANAMA. Acta Horticulturae, (1065), 947-952. doi:10.17660/actahortic.2015.1065.118Honger J. Aetiology and importance of foliage diseases affecting citrus in the nursery at the Agricultural Research Station (ARS). PhD Thesis. Accra: University of Ghana; 2004.Vicent A, Álvarez A, León M, García-Jiménez J. Mycosphaerella sp. asociada a manchas foliares de cítricos en España. In: Proceedings of the 13th Congress of the Spanish Phytopathological Society. 2006; Murcia; Spain.Abdelfattah, A., Cacciola, S. O., Mosca, S., Zappia, R., & Schena, L. (2016). Analysis of the Fungal Diversity in Citrus Leaves with Greasy Spot Disease Symptoms. Microbial Ecology, 73(3), 739-749. doi:10.1007/s00248-016-0874-xQuaedvlieg, W., Binder, M., Groenewald, J. Z., Summerell, B. A., Carnegie, A. J., Burgess, T. I., & Crous, P. W. (2014). Introducing the Consolidated Species Concept to resolve species in the Teratosphaeriaceae. Persoonia - Molecular Phylogeny and Evolution of Fungi, 33(1), 1-40. doi:10.3767/003158514x681981Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797. doi:10.1093/nar/gkh340Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772-772. doi:10.1038/nmeth.2109Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., … Huelsenbeck, J. P. (2012). MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Systematic Biology, 61(3), 539-542. doi:10.1093/sysbio/sys029Rambaut A. FigTree v1. 4.0, a graphical viewer of phylogenetic trees. Edinburgh, Scotland: University of Edinburgh; 2016.Spiegelhalter, D. J., Best, N. G., Carlin, B. P., & van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(4), 583-639. doi:10.1111/1467-9868.00353Rue, H., Martino, S., & Chopin, N. (2009). Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(2), 319-392. doi:10.1111/j.1467-9868.2008.00700.xChristensen RH. Ordinal—regression models for ordinal data. R package version 2015.1–21. 2015. http://www.cran.r-project.org/package=ordinal/ Accessed 8 May 2017.Hunter, G. C., Wingfield, B. D., Crous, P. W., & Wingfield, M. J. (2006). A multi-gene phylogeny for species of Mycosphaerella occurring on Eucalyptus leaves. Studies in Mycology, 55, 147-161. doi:10.3114/sim.55.1.147Braun, U., & Urtiaga, R. (2013). New species and new records of cercosporoid hyphomycetes from Cuba and Venezuela (Part 2). Mycosphere, 4(2), 172-214. doi:10.5943/mycosphere/4/2/3Braun, U., Crous, P. W., & Nakashima, C. (2014). Cercosporoid fungi (Mycosphaerellaceae) 2. Species on monocots (Acoraceae to Xyridaceae, excluding Poaceae). IMA Fungus, 5(2), 203-390. doi:10.5598/imafungus.2014.05.02.04Aptroot A. Mycosphaerella and its anamorphs: conspectus of Mycosphaerella CBS Biodiversity Series 5. Utrecht: CBS-KNAW Fungal Biodiversity Centre; 2006.Crous, P. W., & Wingfield, M. J. (1996). Species of Mycosphaerella and Their Anamorphs Associated with Leaf Blotch Disease of Eucalyptus in South Africa. Mycologia, 88(3), 441. doi:10.2307/3760885Aguín, O., Sainz, M. J., Ares, A., Otero, L., & Pedro Mansilla, J. (2013). Incidence, severity and causal fungal species of Mycosphaerella and Teratosphaeria diseases in Eucalyptus stands in Galicia (NW Spain). Forest Ecology and Management, 302, 379-389. doi:10.1016/j.foreco.2013.03.021Maxwell, A., Dell, B., Neumeister-Kemp, H. G., & Hardy, G. E. S. J. (2003). Mycosphaerella species associated with Eucalyptus in south-western Australia: new species, new records and a key. Mycological Research, 107(3), 351-359. doi:10.1017/s0953756203007354Otero L, Aguín O, Mansilla J, Hunter G, Wingfield M. Identificación de especies de Mycosphaerella en Eucalyptus globulus y E. nitens en Galicia. In: Proceedings of the 13th Congress of the Spanish Phytopathological Society; 2006; Murcia, Spain.ZHAN, J., & McDONALD, B. A. (2011). Thermal adaptation in the fungal pathogen Mycosphaerella graminicola. Molecular Ecology, 20(8), 1689-1701. doi:10.1111/j.1365-294x.2011.05023.xPeel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633-1644. doi:10.5194/hess-11-1633-200

    Symptoms of citrus greasy spot.

    No full text
    <p>A, leaves of ‘Valencia’ sweet orange in Churuquita, Panama B, leaves of ‘Ortanique’ tangor in Alzira, Spain C, chlorotic lesions on the adaxial leaf surface of ‘Valencia’ sweet orange plants inoculated with isolates of the <i>Zasmidium citri-griseum</i> complex from Panama D, necrotic pustules on the abaxial leaf surface E and F, absence of greasy spot symptoms in control plants.</p

    Severity of citrus greasy spot on ‘Valencia’ sweet orange plants inoculated with isolates of the <i>Zasmidium citri-griseum</i> complex from Panama and percentage of reisolation.

    No full text
    <p>Severity of citrus greasy spot on ‘Valencia’ sweet orange plants inoculated with isolates of the <i>Zasmidium citri-griseum</i> complex from Panama and percentage of reisolation.</p

    Colony morphology of <i>Mycosphaerellaceae</i> isolates: <i>Zasmidium citri-griseum</i> (4NTV1), <i>Amycosphaerella africana</i> (MC-140), reference isolate of <i>Z</i>. <i>citri-griseum</i> (CBS 122455), reference isolate of <i>A</i>. <i>africana</i> (CBS 680.95, CBS 110500, CBS 110843) on potato dextrose agar (PDA), oatmeal agar (OA), spezieller nährstoffarmer agar (SNA), and malt extract agar (MEA) incubated at 25°C in the dark for 30 days.

    No full text
    <p>Colony morphology of <i>Mycosphaerellaceae</i> isolates: <i>Zasmidium citri-griseum</i> (4NTV1), <i>Amycosphaerella africana</i> (MC-140), reference isolate of <i>Z</i>. <i>citri-griseum</i> (CBS 122455), reference isolate of <i>A</i>. <i>africana</i> (CBS 680.95, CBS 110500, CBS 110843) on potato dextrose agar (PDA), oatmeal agar (OA), spezieller nährstoffarmer agar (SNA), and malt extract agar (MEA) incubated at 25°C in the dark for 30 days.</p
    corecore