15 research outputs found

    Isolation and identification of a male-produced aggregation-sex pheromone for the velvet longhorned beetle, Trichoferus campestris.

    Get PDF
    The velvet longhorned beetle, Trichoferus campestris (Faldermann) ("VLB"; Coleoptera: Cerambycidae), is native to eastern Asia where it infests and damages a wide range of deciduous and coniferous tree species, including orchard and timber species. Immature stages of VLB are transported to new countries via international commerce, and populations have established outside the native range of the species. Here, we show that identification of pheromones of invasive pest species can be expedited by knowledge of the semiochemistry of related taxa. Histological sectioning revealed subcuticular, male-specific prothoracic glands connected to pits in the cuticle, which, in related species, are diagnostic for production of male-produced aggregation-sex pheromones, usually characterized by 2,3-alkanediol/hydroxyketone structural motifs. However, in preliminary field bioassays, beetles were not attracted by any known cerambycid pheromones. Subsequently, we identified a novel variant of the hydroxyketone motif ("trichoferone") from headspace volatiles of males. In field bioassays, synthetic trichoferone was more attractive to both sexes of VLB than previously developed high-release-rate ethanol lures, and attraction was strongly female biased. This study demonstrated the utility of the prothoracic gland trait for predicting pheromone use in cerambycid species in the subfamily Cerambycinae, and that identification of pheromones of novel species can be expedited by knowledge of pheromones of related species. Trichoferone should prove to be a valuable tool for detection of VLB in regions where the beetle is or may become established

    COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-up

    Get PDF
    Coronavirus disease 2019 (COVID-19), a viral respiratory illness caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may predispose patients to thrombotic disease, both in the venous and arterial circulations, due to excessive inflammation, platelet activation, endothelial dysfunction, and stasis. In addition, many patients receiving antithrombotic therapy for thrombotic disease may develop COVID-19, which can have implications for choice, dosing, and laboratory monitoring of antithrombotic therapy. Moreover, during a time with much focus on COVID-19, it is critical to consider how to optimize the available technology to care for patients without COVID-19 who have thrombotic disease. Herein, we review the current understanding of the pathogenesis, epidemiology, management and outcomes of patients with COVID-19 who develop venous or arterial thrombosis, and of those with preexisting thrombotic disease who develop COVID-19, or those who need prevention or care for their thrombotic disease during the COVID-19 pandemic.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/155446/1/Bikdeli-2020-COVID-19 and Thrombotic or Thromb.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/155446/3/DeepBluepermissions_agreement-CCBYandCCBY-NC_ORCID_Barnes.docxhttps://deepblue.lib.umich.edu/bitstream/2027.42/155446/4/license_rdf.rdfDescription of Bikdeli-2020-COVID-19 and Thrombotic or Thromb.pdf : ArticleDescription of DeepBluepermissions_agreement-CCBYandCCBY-NC_ORCID_Barnes.docx : Deep Blue sharing agreemen

    \u3ci\u3eSirex noctilio\u3c/i\u3e in North America: the effect of stem-injection timing on the attractiveness and suitability of trap trees

    Get PDF
    1 Sirex noctilio Fabricius, an invasive woodwasp responsible for severe economic damage to pine industries in the southern hemisphere, is now established in the northeastern U.S.A. and portions of eastern Canada. 2 Parts of North America are considered to be high risk for S. noctilio invasion. Effective detection tools, including trap trees, are needed to monitor and survey S. noctilio populations. 3 The present study was conducted to determine the optimal time to chemically stress a tree when aiming to attract the most S. noctilio to the host substrate, as well as to determine which timing produced the most adult progeny. Both of these measures (host attraction and host suitability for development) support the main objectives of the study by offering improved methods for monitoring and management of S. noctilio. 4 Red pine (Pinus resinosa) and Scots pine (Pinus sylvestris) were treated withDicamba at three time intervals. Multiple funnel lindgren traps were placed on these trees and, at the end of the flight season, the treatment trees were felled and brought into the laboratory. The number of S. noctilio caught in the traps (host attraction) and the number of S. noctilio emerged from the treated trees (host suitability) were determined. 5 Optimal timing of the chemical girdle was dependent on host species. Significantly more female S. noctilio were captured on trap trees prepared 1 month before flight (red pine and Scots pine) or prepared at flight (Scots pine) compared with other treatments. There were also significantly more females reared from Scots pine trap trees prepared at flight and red pine trap trees prepared 1 month before and/or at flight. 6 By the beginning of August, most (79%) of the S. noctilio for the flight season were caught in the traps at the trap trees. The sex ratio (males : females) was closer to 1 : 1 than previously reported in studies from other countries. 7 The results obtained in the present study demonstrate that timing is important when creating a trap tree with herbicide in North America, whether for the purpose of detection or as part of a biological control effort

    Efficacy of trapping protocols for Agrilus jewel beetles

    Get PDF
    The genus Agrilus is one of the most diverse insect genera worldwide. The larval feeding activity causes extensive damage in both forests and orchards. In addition, more than 30 species have been introduced outside their native range so far, including the emerald ash borer Agrilus planipennis Fairmaire. Thus, the availability of efficient trapping protocols for early detection of Agrilus species at entry points is of utmost importance. In this study we tested whether trapping protocols developed for surveillance of A. planipennis in North America were also effective for other Agrilus species. In particular, through a multi-country assessment we compared the efficacy of detecting Agrilus species on: (i) green glue-coated prism traps vs. green Fluon-coated multi-funnel traps when baited with the green leaf volatile (Z)-3-hexenol or left unbaitedand (ii) green multi-panel traps vs. green multi-panel traps baited with dead adult Agrilus beetles (decoys). A total of 23,481 individuals from 45 Agrilus species were caught. Trap design significantly affected both species richness and abundance of Agrilus species in several of the countries where the trapping experiments were carried out, and green prism traps outperformed green multi-funnel traps in most cases. On the contrary, the addition of a (Z)-3-hexenol lure or dead adult beetle decoys on to traps did not improve trap catches. Our study highlights that reliable trap models to survey Agrilus species are already available, but also that there is the clear need to further investigate chemical ecology of Agrilus species to develop semiochemical lures that can improve detection efficacy
    corecore