185 research outputs found
DEMO WCLL BB breeding zone cooling system design: analysis and discussion
The Water-Cooled Lithium-Lead (WCLL) Breeding Blanket (BB) is a key component in charge of ensuring Tritium self-sufficiency, shielding the Vacuum Vessel and removing the heat generated in the tokamak plasma. The last function is fulfilled by the First Wall (FW) and Breeding Zone (BZ) independent cooling systems. Several layouts of BZ coolant system have been investigated in the last years in order to identify a configuration that guarantee Eurofer temperature below the limit (823 K) and good thermal-hydraulic performances (i.e. water outlet temperature 601 K). A research activity is conducted to study and compare four configurations, which rely on different arrangement of the stiffening plates (i.e. toroidal-poloidal and radial-poloidal), orientation of the cooling pipes (i.e. horizontal, vertical) and PbLi flow path. The analysis is carried out using a CFD codes, thus a threedimensional finite volume model of each configuration is developed, adopting the commercial ANSYS CFX code. The objective is to compare the BZ cooling system layouts, identifying and discussing advantages and key issues from the thermal-hydraulic point of view, also considering feedbacks from MHD and neutronics analyses. The research activity aims at laying the groundwork for the finalization of the WCLL blanket design, pointing out relevant thermal-hydraulic aspects
Numerical analysis of temperature stratification in the CIRCE pool facility
In the framework of Heavy Liquid Metal (HLM) GEN IV Nuclear reactor development, the focus is in the combination of security and performance. Numerical simulations with Computational Fluid Dynamics (CFD) or system codes are useful tools to predict the main steady-state phenomena and how transitional accidents could unfold in GEN IV reactors. In this paper, to support the validation of CFD as a valid tool for the design, the capability of ANSYS CFX v15.0 to simulate and reproduce mixed natural convection and thermal stratification phenomena inside a pool is investigated. The 3D numerical model is based on the CIRCE facility, located in C.R. ENEA Brasimone. It is a pool facility, structured with all the components necessary to simulate the behavior of an HLM reactor, where LBE flows into the primary circuit. For the analysis, the LBE physical properties are implemented in CFX by using recent NEA equations [2]. Previously published RELAP5-3D© results [1] are employed to derive accurate boundary conditions for the simulation of the steady-state conditions in the pool and for CFX validation. The analysis focuses on the pool natural circulation with the presence of thermal structures in contact with LBE, considered as constant temperature sources. The development of thermal stratification in the pool is observed and evaluated with a mesh sensitivity analysis
Modellazione numerica dello scavo di gallerie con esplosivo
Il lavoro di tesi affronta in tema della modellazione numerica dello scavo di gallerie con il metodo dell'esplosivo. Inizialmente si è descritto dettagliatamente il moto vibratorio all'interno di un mezzo continuo e le sue caratteristiche principali. Si è poi introdotto l'argomento dello scavo di gallerie con esplosivo descrivendo il metodo, le fasi che lo compongono e gli strumenti necessari. Successivamente si è condotto uno studio teorico sull'effetto dell'esplosivo nell'intorno della galleria. Si sono analizzati i fattori più importanti che influenzano la prestazione di un esplosione, come la geometria del foro, il diametro della carica, il tipo di esplosivo e l'accoppiamento. Quando ci si focalizza sugli effetti dovuti alla propagazione delle vibrazioni in seguito ad un'esplosione bisogna distinguere fra due zone, la zona prossima all'esplosione e la zona a distanza dall'esplosione. Infine, in questa sezione sono stati riportati due metodi, uno analitico ed uno numerico per descrivere il comportamento della roccia nell'intorno della carica. Uno degli aspetti più importanti di questo lavoro di tesi è stato quello di definire la pressione esercitata dall'esplosivo sulle pareti del foro. Si sono studiati due scenari distinti: il caso di esplosione in assenza di aria ed il caso di esplosione in presenza di aria. Non essendoci, per quest'ultimo caso equazioni che permettono di stimare la pressione agente sulle pareti del foro, in ambito di questa tesi è stato proposto un metodo per la determinazione della pressione in presenza di aria. Infine, sono state condotte analisi numeriche dinamiche per la stima della velocità delle particelle e del danno indotto alle strutture. A tal fine è stato analizzato un caso studio: il progetto della galleria stradale R60. Si è concluso, dai risultati ottenuti, che il rischio di danneggiare la galleria esistente, costruendo la nuova galleria R60 con il metodo dell'esplosivo, è molto alto
Plasmonics in heavily-doped semiconductor nanocrystals
Heavily-doped semiconductor nanocrystals characterized by a tunable plasmonic
band have been gaining increasing attention recently. Herein, we introduce this
type of materials focusing on their structural and photo physical properties.
Beside their continuous-wave plasmonic response, depicted both theoretically
and experimentally, we also review recent results on their transient, ultrafast
response. This was successfully interpreted by adapting models of the ultrafast
response of gold nanoparticles.Comment: 20 pages review paper, 15 figure
Rabbit Feces as Feed for Ruminants and as an Energy Source
There are prospects for using novel feeds from various sources to provide ruminants with alternative sources of protein and energy such as by-products, and animal wastes. Rabbit feces are a concentrated source of fiber and could have commercial potential both as input biomass in anaerobic processes for biogas production, as well as a fibrous source for ruminal degradation. The aims of this work were to assess the potential as ruminant feeding and as biogas production of rabbit feces, in comparison with 12 crops. The chemical composition and the potential and experimental in vitro true digestibility (IVTD) and neutral detergent fiber digestibility (NDFD) of 148 feces samples were determined by using chemical methods, Daisy system digestibility and/or NIRS predictions. The average biomethane potential (BMP) was 286 ± 10 lCH4/kg SV with −4% vs. the crops average. Milk forage unit (milk FU), IVTD and NDFD of feces were 0.54 ± 0.06 milk FU/kg DM, 74% ± 3% and 50% ± 5%, respectively, with comparisons of −19%, −11% and −24% vs. the crops average. Reconstruction of the potential values based on the chemical constituents but using the crop partial least square model well agreed with the NIRS calibrations and cross-validation. In a global NIRS calibration of the feces and crops the relative predicted deviation for IVTD, NDFD and milk FU were 3.1, 2.9 and 2.6, respectively, and only 1.5 for BMP. Running the Daisy system for rabbit feces in rumen fluid gave some inconsistencies, weakened the functional relationships, and appeared not to be correlated with the potential values of IVTD and NDFD. Nevertheless, the energetic potential of feces appears to be similar to some conventional crops at different degrees of maturity. Thus we conclude that rabbit feces has potential value as a ruminant feed and for biogas production
Partial purification and MALDI-TOF MS analysis of UN1, a tumor antigen membrane glycoprotein.
UN1 is a membrane glycoprotein that is expressed in immature human thymocytes, a subpopulation of peripheral T lymphocytes, the HPB acute lymphoblastic leukemia (ALL) T-cell line and fetal thymus. We previously reported the isolation of a monoclonal antibody (UN1 mAb) recognizing the UN1 protein that was classified as "unclustered" at the 5th and 6th International Workshop and Conference on Human Leukocyte Differentiation Antigens. UN1 was highly expressed in breast cancer tissues and was undetected in non-proliferative lesions and in normal breast tissues, indicating a role for UN1 in the development of a tumorigenic phenotype of breast cancer cells. In this study, we report a partial purification of the UN1 protein from HPB-ALL T cells by anion-exchange chromatography followed by immunoprecipitation with the UN1 mAb and MALDI-TOF MS analysis. This analysis should assist in identifying the amino acid sequence of UN
BRCA1/2 genetic background-based therapeutic tailoring of human ovarian cancer: hope or reality?
Ovarian epithelial tumors are an hallmark of hereditary cancer syndromes which are related to the germ-line inheritance of cancer predisposing mutations in BRCA1 and BRCA2 genes. Although these genes have been associated with multiple different physiologic functions, they share an important role in DNA repair mechanisms and therefore in the whole genomic integrity control. These findings have risen a variety of issues in terms of treatment and prevention of breast and ovarian tumors arising in this context. Enhanced sensitivity to platinum-based anticancer drugs has been related to BRCA1/2 functional loss. Retrospective studies disclosed differential chemosensitivity profiles of BRCA1/2-related as compared to "sporadic" ovarian cancer and led to the identification of a "BRCA-ness" phenotype of ovarian cancer, which includes inherited BRCA1/2 germ-line mutations, a serous high grade histology highly sensitive to platinum derivatives. Molecularly-based tailored treatments of human tumors are an emerging issue in the "era" of molecular targeted drugs and molecular profiling technologies. We will critically discuss if the genetic background of ovarian cancer can indeed represent a determinant issue for decision making in the treatment selection and how the provocative preclinical findings might be translated in the therapeutic scenario. The presently available preclinical and clinical evidence clearly indicates that genetic background has an emerging role in treatment individualization for ovarian cancer patients
Cation exchange synthesis and optoelectronic properties of type II CdTe-Cu2-xTe nano-heterostructures
Rod-shaped CdTe-Cu2-xTe nano-heterostructures with tunable dimensions of both sub-units and a type II band alignment were prepared by Cd2+/Cu+ cation exchange. The light absorption properties of the heterostructures are dominated by the excitonic and plasmonic contributions arising, respectively, from the CdTe and the Cu2-xTe sub-units. These results were confirmed over a wide range of sub-unit length fractions through optical modelling based on the discrete dipole approximation (DDA). Although assuming electronically independent sub-units, our modelling results indicate a negligible ground state interaction between the CdTe exciton and the Cu2-xTe plasmon. This lack of interaction may be due to the low spectral overlap between exciton and plasmon, but also to localization effects in the vacancy-doped sub-unit. The electronic interaction between both sub-units was evaluated with pump-probe spectroscopy by assessing the relaxation dynamics of the excitonic transition. In particular, the CdTe exciton decays faster in the presence of the Cu2-xTe sub-unit, and the decay gets faster with increasing its length. This points towards an increased probability of Auger mediated recombination due to the high carrier density in the Cu2-xTe sub-unit. This indication is supported through length-fraction dependent band structure calculations, which indicate a significant leakage of the CdTe electron wavefunction into the Cu2-xTe sub-unit that increases along with the shortening of the CdTe sub-unit, thus enhancing the probability of Auger recombination. Therefore, for the application of type II chalcogenide-chalcogenide heterostructures based on Cu and Cd for photoenergy conversion, a shorter Cu-based sub-unit may be advantageous, and the suppression of high carrier density within this sub-unit is of high importance
Endothelial Function and Dipper Status
SUMMARY Aims: Essential hypertension, as well as other established cardiovascular risk factors, is associated with endothelial dysfunction. Hypertensive patients with a nondipper circadian pattern have a greater risk of cerebrovascular and cardiovascular complications in comparison with those with a dipper circadian pattern. In this study, we evaluated the association between nondipper pattern and endothelial function in patients with essential hypertension. Methods: We evaluated the forearm blood flow (FBF) response to intraarterial acetylcholine (ACh), an endothelium-dependent vasodilator, and sodium nitroprusside (SNP), an endothelium-independent vasodilator, infusions in 190 hypertensive patients stratified according to dipper and nondipper status. The FBF was measured by strain-gauge plethysmography. Effects of oxidative stress on FBF were evaluated by intraarterial infusion of vitamin C. Ambulatory BP monitorings were obtained by a validated oscillometric device (SpaceLabs 90207 Monitor Inc., Issaquah, WA, USA). Results: Systolic and diastolic blood pressures were higher during daytime and lower during night-time in dipper subjects than in nondippers. The peak percent increase in ACh-stimulated FBF was higher in dippers than in nondippers (473% vs. 228%, P < 0.001). The FBF responses to SNP were similar in dipper and nondipper patients. The FBF response to ACh during coinfusion of vitamin C was higher in nondippers rather than in dipper hypertensives. Conclusions: Present data demonstrate that endothelium-dependent vasodilation is impaired in patients who have nondipper hypertension. The effects of vitamin C on impaired ACh-stimulated vasodilation support the hypothesis that oxidative stress contributes to endothelial dysfunction of nondipper hypertensive patients
- …