315 research outputs found

    Emery vs. Hubbard model for cuprate superconductors: a Composite Operator Method study

    Full text link
    Within the Composite Operator Method (COM), we report the solution of the Emery model (also known as p-d or three band model), which is relevant for the cuprate high-Tc superconduc- tors. We also discuss the relevance of the often-neglected direct oxygen-oxygen hopping for a more accurate, sometimes unique, description of this class of materials. The benchmark of the solution is performed by comparing our results with the available quantum Monte Carlo ones. Both single- particle and thermodynamic properties of the model are studied in detail. Our solution features a metal-insulator transition at half filling. The resulting metal-insulator phase diagram agrees qual- itatively very well with the one obtained within Dynamical Mean-Field Theory. We discuss the type of transition (Mott-Hubbard (MH) or charge-transfer (CT)) for the microscopic (ab-initio) parameter range relevant for cuprates getting, as expected a CT type. The emerging single-particle scenario clearly suggests a very close relation between the relevant sub-bands of the three- (Emery) and the single- band (Hubbard) models, thus providing an independent and non-perturbative proof of the validity of the mapping between the two models for the model parameters optimal to describe cuprates. Such a result confirms the emergence of the Zhang-Rice scenario, which has been recently questioned. We also report the behavior of the specific heat and of the entropy as functions of the temperature on varying the model parameters as these quantities, more than any other, depend on and, consequently, reveal the most relevant energy scales of the system.Comment: 20 pages, 19 figure

    Integrated Geomatics Surveying and Data Management in the Investigation of Slope and Fluvial Dynamics

    Get PDF
    In mountain environments, slope and fluvial dynamics often interact, and their relationship can be investigated through an integrated methodological approach. Landslides are a source of supplying sediments into riverbeds and can interact or interrupt the water course. Water courses can trigger or re-activate slope movements. The complexity of investigating the interaction between the two dynamics needs a complementarity of methods and techniques, combining remote and proximal sensing, geotechnical in situ surveys, and repositories and catalogue datasets. This leads to a synergistic use of all the heterogeneous data from different fields and formats. The present paper provides a literature review on the approaches and surveying procedures adopted in the investigation of slope and fluvial dynamics and highlights the need to improve the integrated management of geospatial information complemented by quality information. In this regard, we outline a geodatabase structure capable of handling the variety of geoscientific data available at different spatial and temporal scales, with derived products that are useful in integrated monitoring tasks. Indeed, the future adoption of a shared physical structure would allow the merging and synergistic use of data provided by different surveyors as well as the effective storing and sharing of datasets from a monitoring perspective

    MicroRNAs in melanoma development and resistance to target therapy

    Get PDF
    microRNAs constitute a complex class of pleiotropic post-transcriptional regulators of gene expression involved in the control of several physiologic and pathologic processes. Their mechanism of action is primarily based on the imperfect matching of a seed region located at the 5' end of a 21-23 nt sequence with a partially complementary sequence located in the 3' untranslated region of target mRNAs. This leads to inhibition of mRNA translation and eventually to its degradation. Individual miRNAs are capable of binding to several mRNAs and several miRNAs are capable of influencing the function of the same mRNAs. In recent years networks of miRNAs are emerging as capable of controlling key signaling pathways responsible for the growth and propagation of cancer cells. Furthermore several examples have been provided which highlight the involvement of miRNAs in the development of resistance to targeted drug therapies. In this review we provide an updated overview of the role of miRNAs in the development of melanoma and the identification of the main downstream pathways controlled by these miRNAs. Furthermore we discuss a group of miRNAs capable to influence through their respective up- or down-modulation the development of resistance to BRAF and MEK inhibitors

    Image-Based Monitoring of Cracks: Effectiveness Analysis of an Open-Source Machine Learning-Assisted Procedure

    Get PDF
    The proper inspection of a cracks pattern over time is a critical diagnosis step to provide a thorough knowledge of the health state of a structure. When monitoring cracks propagating on a planar surface, adopting a single-image-based approach is a more convenient (costly and logistically) solution compared to subjective operators-based solutions. Machine learning (ML)- based monitoring solutions offer the advantage of automation in crack detection; however, complex and time-consuming training must be carried out. This study presents a simple and automated ML-based crack monitoring approach implemented in open sources software that only requires a single image for training. The effectiveness of the approach is assessed conducting work in controlled and real case study sites. For both sites, the generated outputs are significant in terms of accuracy (~1 mm), repeatability (sub-mm) and precision (sub-pixel). The presented results highlight that the successful detection of cracks is achievable with only a straightforward ML-based training procedure conducted on only a single image of the multi-temporal sequence. Furthermore, the use of an innovative camera kit allowed exploiting automated acquisition and transmission fundamental for Internet of Things (IoTs) for structural health monitoring and to reduce user-based operations and increase safety

    An Integrated Procedure to Assess the Stability of Coastal Rocky Cliffs: From UAV Close-Range Photogrammetry to Geomechanical Finite Element Modeling

    Get PDF
    The present paper explores the combination of unmanned aerial vehicle (UAV) photogrammetry and three-dimensional geomechanical modeling in the investigation of instability processes of long sectors of coastal rocky cliffs. The need of a reliable and detailed reconstruction of the geometry of the cliff surfaces, beside the geomechanical characterization of the rock materials, could represent a very challenging requirement for sub-vertical coastal cliffs overlooking the sea. Very often, no information could be acquired by alternative surveying methodologies, due to the absence of vantage points, and the fieldwork could pose a risk for personnel. The case study is represented by a 600 m long sea cliff located at Sant\u2019Andrea (Melendugno, Apulia, Italy). The cliff is characterized by a very complex geometrical setting, with a suggestive alternation of 10 to 20 m high vertical walls, with frequent caves, arches and rock-stacks. Initially, the rocky cliff surface was reconstructed at very fine spatial resolution from the combination of nadir and oblique images acquired by unmanned aerial vehicles. Successively, a limited area has been selected for further investigation. In particular, data refinement/decimation procedure has been assessed to find a convenient three-dimensional model to be used in the finite element geomechanical modeling without loss of information on the surface complexity. Finally, to test integrated procedure, the potential modes of failure of such sector of the investigated cliff were achieved. Results indicate that the most likely failure mechanism along the sea cliff examined is represented by the possible propagation of shear fractures or tensile failures along concave cliff portions or over-hanging due to previous collapses or erosion of the underlying rock volumes. The proposed approach to the investigation of coastal cliff stability has proven to be a possible and flexible tool in the rapid and highly-automated investigation of hazards to slope failure in coastal areas

    New geodetic and gravimetric maps to infer geodynamics of Antarctica with insights on Victoria Land

    Get PDF
    In order to make inferences on the geodynamics of Antarctica, geodetic and gravimetric maps derived from past and new observations can be used. This paper provides new insights into the geodynamics of Antarctica by integrating data at regional and continental scales. In particular, signatures of geodynamic activity at a regional extent have been investigated in Victoria Land (VL, Antarctica) by means of Global Navigation Satellite System (GNSS) permanent station observations, data from the VLNDEF (Victoria Land Network for Deformation control) discontinuous network, and gravity station measurements. At the continental scale, episodic GNSS observations on VLNDEF sites collected for 20 years, together with continuous data from the International GNSS Service (IGS) and Polar Earth Observing Network (POLENET) sites, were processed, and the Euler pole position assessed with the angular velocity of the Antarctic plate. Both the Bouguer and the free-air gravity anomaly maps were obtained by integrating the available open-access geophysics dataset, and a compilation of 180 gravity measurements collected in the VL within the Italian National Program for Antarctic Research (PNRA) activities. As a result, new evidence has been detected at regional and continental scale. The main absolute motion of VL is towards SE (Ve 9.9 ± 0.26 mm/yr, Vn −11.9 ± 0.27 mm/yr) with a pattern similar to the transforms of the Tasman and Balleny fracture zones produced as consequence of Southern Ocean spreading. Residual velocities of the GNSS stations located in VL confirm the active role of the two main tectonic lineaments of the region, the Rennick–Aviator and the Lillie–Tucker faults with right-lateral sense of shear. The resulting VL gravity anomalies show a NW region characterized by small sized Bouguer anomaly with high uplift rates associated and a SE region with low values of Bouguer anomaly and general subsidence phenomena. The East and West Antarctica are characterized by a different thickness of the Earth’s crust, and the relative velocities obtained by the observed GNSS data confirm that movements between the two regions are negligible. In East Antarctica, the roots of the main subglacial highlands, Gamburtsev Mts and Dronning Maud Land, are present. The Northern Victoria Land (NVL) is characterized by more scattered anomalies. These confirm the differences between the Glacial Isostatic Adjustment (GIA) modeled and observed uplift rates that could be related to deep-seated, regional scale structures

    Potential benefits of cell therapy in coronary heart disease

    Get PDF
    AbstractCardiovascular disease is the leading cause of morbidity and mortality in the world. In recent years, there has been an increasing interest both in basic and clinical research regarding the field of cell therapy for coronary heart disease (CHD). Several preclinical models of CHD have suggested that regenerative properties of stem and progenitor cells might help restoring myocardial functions in the event of cardiac diseases. Here, we summarize different types of stem/progenitor cells that have been tested in experimental and clinical settings of cardiac regeneration, from embryonic stem cells to induced pluripotent stem cells. Then, we provide a comprehensive description of the most common cell delivery strategies with their major pros and cons and underline the potential of tissue engineering and injectable matrices to address the crucial issue of restoring the three-dimensional structure of the injured myocardial region. Due to the encouraging results from preclinical models, the number of clinical trials with cell therapy is continuously increasing and includes patients with CHD and congestive heart failure. Most of the already published trials have demonstrated safety and feasibility of cell therapies in these clinical conditions. Several studies have also suggested that cell therapy results in improved clinical outcomes. Numerous ongoing clinical trials utilizing this therapy for CHD will address fundamental issues concerning cell source and population utilized, as well as the use of imaging techniques to assess cell homing and survival, all factors that affect the efficacy of different cell therapy strategies
    • …
    corecore