15 research outputs found

    Kinome capture sequencing of high-grade serous ovarian carcinoma reveals novel mutations in theJAK3gene

    Get PDF
    High-grade serous ovarian carcinoma (HGSOC) remains the deadliest form of epithelial ovarian cancer and despite major efforts little improvement in overall survival has been achieved. Identification of recurring "driver" genetic lesions has the potential to enable design of novel therapies for cancer. Here, we report on a study to find such new therapeutic targets for HGSOC using exome-capture sequencing approach targeting all kinase genes in 127 patient samples. Consistent with previous reports, the most frequently mutated gene wasTP53(97% mutation frequency) followed byBRCA1(10% mutation frequency). The average mutation frequency of the kinase genes mutated from our panel was 1.5%. Intriguingly, afterBRCA1,JAK3was the most frequently mutated gene (4% mutation frequency). We tested the transforming properties of JAK3 mutants using the Ba/F3 cell-basedin vitrofunctional assay and identified a novel gain-of-function mutation in the kinase domain ofJAK3(p.T1022I). Importantly, p.T1022IJAK3mutants displayed higher sensitivity to the JAK3-selective inhibitor Tofacitinib compared to controls. For independent validation, we re-sequenced the entireJAK3coding sequence using tagged amplicon sequencing (TAm-Seq) in 463 HGSOCs resulting in an overall somatic mutation frequency of 1%. TAm-Seq screening ofCDK12in the same population revealed a 7% mutation frequency. Our data confirms that the frequency of mutations in kinase genes in HGSOC is low and provides accurate estimates for the frequency ofJAK3andCDK12mutations in a large well characterized cohort. Although p.T1022IJAK3mutations are rare, our functional validation shows that if detected they should be considered as potentially actionable for therapy. The observation ofCDK12mutations in 7% of HGSOC cases provides a strong rationale for routine somatic testing, although more functional and clinical characterization is required to understand which nonsynonymous mutations alterations are associated with homologous recombination deficiency.ISSN:1932-620

    Kinome capture sequencing of high-grade serous ovarian carcinoma reveals novel mutations in the JAK3 gene.

    Get PDF
    High-grade serous ovarian carcinoma (HGSOC) remains the deadliest form of epithelial ovarian cancer and despite major efforts little improvement in overall survival has been achieved. Identification of recurring "driver" genetic lesions has the potential to enable design of novel therapies for cancer. Here, we report on a study to find such new therapeutic targets for HGSOC using exome-capture sequencing approach targeting all kinase genes in 127 patient samples. Consistent with previous reports, the most frequently mutated gene was TP53 (97% mutation frequency) followed by BRCA1 (10% mutation frequency). The average mutation frequency of the kinase genes mutated from our panel was 1.5%. Intriguingly, after BRCA1, JAK3 was the most frequently mutated gene (4% mutation frequency). We tested the transforming properties of JAK3 mutants using the Ba/F3 cell-based in vitro functional assay and identified a novel gain-of-function mutation in the kinase domain of JAK3 (p.T1022I). Importantly, p.T1022I JAK3 mutants displayed higher sensitivity to the JAK3-selective inhibitor Tofacitinib compared to controls. For independent validation, we re-sequenced the entire JAK3 coding sequence using tagged amplicon sequencing (TAm-Seq) in 463 HGSOCs resulting in an overall somatic mutation frequency of 1%. TAm-Seq screening of CDK12 in the same population revealed a 7% mutation frequency. Our data confirms that the frequency of mutations in kinase genes in HGSOC is low and provides accurate estimates for the frequency of JAK3 and CDK12 mutations in a large well characterized cohort. Although p.T1022I JAK3 mutations are rare, our functional validation shows that if detected they should be considered as potentially actionable for therapy. The observation of CDK12 mutations in 7% of HGSOC cases provides a strong rationale for routine somatic testing, although more functional and clinical characterization is required to understand which nonsynonymous mutations alterations are associated with homologous recombination deficiency

    Chromosomal Aberrations in Bladder Cancer: Fresh versus Formalin Fixed Paraffin Embedded Tissue and Targeted FISH versus Wide Microarray-Based CGH Analysis

    Get PDF
    Bladder carcinogenesis is believed to follow two alternative pathways driven by the loss of chromosome 9 and the gain of chromosome 7, albeit other nonrandom copy number alterations (CNAs) were identified. However, confirmation studies are needed since many aspects of this model remain unclear and considerable heterogeneity among cases has emerged. One of the purposes of this study was to evaluate the performance of a targeted test (UroVysion assay) widely used for the detection of Transitional Cell Carcinoma (TCC) of the bladder, in two different types of material derived from the same tumor. We compared the results of UroVysion test performed on Freshly Isolated interphasic Nuclei (FIN) and on Formalin Fixed Paraffin Embedded (FFPE) tissues from 22 TCCs and we didn't find substantial differences. A second goal was to assess the concordance between array-CGH profiles and the targeted chromosomal profiles of UroVysion assay on an additional set of 10 TCCs, in order to evaluate whether UroVysion is an adequately sensitive method for the identification of selected aneuploidies and nonrandom CNAs in TCCs. Our results confirmed the importance of global genomic screening methods, that is array based CGH, to comprehensively determine the genomic profiles of large series of TCCs tumors. However, this technique has yet some limitations, such as not being able to detect low level mosaicism, or not detecting any change in the number of copies for a kind of compensatory effect due to the presence of high cellular heterogeneity. Thus, it is still advisable to use complementary techniques such as array-CGH and FISH, as the former is able to detect alterations at the genome level not excluding any chromosome, but the latter is able to maintain the individual data at the level of single cells, even if it focuses on few genomic regions

    Near-zero difficult tracheal intubation and tracheal intubation failure rate with the "Besta Airway Algorithm" and "Glidescope® in morbidly obese" (GLOBE)

    No full text
    Unpredicted Difficult Tracheal Intubation (DTI) with Macintosh occurs frequently in obese patients. We investigated the incidence of DTI using an algorithm based on preoperative assessment with the El-Ganzouri Risk Index (EGRI) and Glidescope® routine use

    Comparison between invasive and noninvasive techniques of evaluation of microvascular structural alterations

    No full text
    The evaluation of the morphological characteristics of small resistance arteries in humans is challenging. The gold standard method is generally considered to be the measurement by wire or pressure micromyography of the media-to-lumen ratio of subcutaneous small vessels obtained by local biopsies. However, noninvasive techniques for the evaluation of retinal arterioles were recently proposed; in particular, two approaches, scanning laser Doppler flowmetry (SLDF) and adaptive optics, seem to provide useful information; both of them provide an estimation of the wall-to-lumen ratio (WLR) of retinal arterioles. Moreover, a noninvasive measurement of basal and total capillary density may be obtained by videomicroscopy/capillaroscopy. No direct comparison of these three noninvasive techniques in the same population was previously performed; in particular, adaptive optics was never validated against micromyography

    Decreased circulating t regulatory lymphocytes in obese patients undergoing bariatric surgery

    Get PDF
    It has been previously demonstrated that T lymphocytes may be involved in the development of hypertension and microvascular remodeling, and that circulating T effector lymphocytes may be increased in hypertension. In particular, Th1 and Th 17 lymphocytes may contribute to the progression of hypertension and microvascular damage while T-regulatory (Treg) lymphocytes seem to be protective in this regard. However, no data is available about patients with severe obesity, in which pronounced microvascular alterations were observed.We have investigated 32 severely obese patients undergoing bariatric surgery, as well as 24 normotensive lean subjects and 12 hypertensive lean subjects undergoing an elective surgical intervention. A peripheral blood sample was obtained before surgery for assessment of CD4+ T lymphocyte subpopulations. Lymphocyte phenotype was evaluated by flow cytometry in order to assess T-effector and Treg lymphocytes.A marked reduction of several Treg subpopulations was observed in obese patients compared with controls, together with an increased in CD4+ effector memory T-effector cells.In severely obese patients, Treg lymphocytes are clearly reduced and CD4+ effector memory cells are increased. It may be hypothesized that they might contribute to the development of marked microvascular alterations previously observed in these patients
    corecore