1,456 research outputs found
William Henry Fry’s Leonora: the Italian connection
On 7 June 1845, the New York Herald published a letter by an ‘occasional correspondent’ from Philadelphia concerning William Henry Fry's first grand opera, Leonora, which premiered three days before at the Chestnut Street Theatre. The letter contained the following remark:All were delighted with the music, it was so much like an old acquaintance in a new coat; indeed some of ‘the cognoscenti’ said that it was a warm ‘hash’ of Bellini, with a cold shoulder of ‘Rossini,’ and a handful of ‘Auber’ salt – whilst others congratulated Mr. Fry upon his opera being so much like Norma
Differentiable Genetic Programming
We introduce the use of high order automatic differentiation, implemented via
the algebra of truncated Taylor polynomials, in genetic programming. Using the
Cartesian Genetic Programming encoding we obtain a high-order Taylor
representation of the program output that is then used to back-propagate errors
during learning. The resulting machine learning framework is called
differentiable Cartesian Genetic Programming (dCGP). In the context of symbolic
regression, dCGP offers a new approach to the long unsolved problem of constant
representation in GP expressions. On several problems of increasing complexity
we find that dCGP is able to find the exact form of the symbolic expression as
well as the constants values. We also demonstrate the use of dCGP to solve a
large class of differential equations and to find prime integrals of dynamical
systems, presenting, in both cases, results that confirm the efficacy of our
approach
A Global Optimisation Toolbox for Massively Parallel Engineering Optimisation
A software platform for global optimisation, called PaGMO, has been developed
within the Advanced Concepts Team (ACT) at the European Space Agency, and was
recently released as an open-source project. PaGMO is built to tackle
high-dimensional global optimisation problems, and it has been successfully
used to find solutions to real-life engineering problems among which the
preliminary design of interplanetary spacecraft trajectories - both chemical
(including multiple flybys and deep-space maneuvers) and low-thrust (limited,
at the moment, to single phase trajectories), the inverse design of
nano-structured radiators and the design of non-reactive controllers for
planetary rovers. Featuring an arsenal of global and local optimisation
algorithms (including genetic algorithms, differential evolution, simulated
annealing, particle swarm optimisation, compass search, improved harmony
search, and various interfaces to libraries for local optimisation such as
SNOPT, IPOPT, GSL and NLopt), PaGMO is at its core a C++ library which employs
an object-oriented architecture providing a clean and easily-extensible
optimisation framework. Adoption of multi-threaded programming ensures the
efficient exploitation of modern multi-core architectures and allows for a
straightforward implementation of the island model paradigm, in which multiple
populations of candidate solutions asynchronously exchange information in order
to speed-up and improve the optimisation process. In addition to the C++
interface, PaGMO's capabilities are exposed to the high-level language Python,
so that it is possible to easily use PaGMO in an interactive session and take
advantage of the numerous scientific Python libraries available.Comment: To be presented at 'ICATT 2010: International Conference on
Astrodynamics Tools and Techniques
- …