322 research outputs found

    A tabu search heuristic based on k-diamonds for the weighted feedback vertex set problem

    No full text
    Given an undirected and vertex weighted graph G = (V,E,w), the Weighted Feedback Vertex Problem (WFVP) consists of finding a subset F ⊆ V of vertices of minimum weight such that each cycle in G contains at least one vertex in F. The WFVP on general graphs is known to be NP-hard and to be polynomially solvable on some special classes of graphs (e.g., interval graphs, co-comparability graphs, diamond graphs). In this paper we introduce an extension of diamond graphs, namely the k-diamond graphs, and give a dynamic programming algorithm to solve WFVP in linear time on this class of graphs. Other than solving an open question, this algorithm allows an efficient exploration of a neighborhood structure that can be defined by using such a class of graphs. We used this neighborhood structure inside our Iterated Tabu Search heuristic. Our extensive experimental show the effectiveness of this heuristic in improving the solution provided by a 2-approximate algorithm for the WFVPon general graphs

    Chemical composition and species identification of microalgal biomass grown at pilot-scale with municipal wastewater and CO2 from flue gases

    Get PDF
    The production potential of a locally isolated Chlorella vulgaris strain and a local green-algae consortium, used in municipal wastewater treatment combined with CO2 sequestration from flue gases, was evaluated for the first time by comparing the elemental and biochemical composition and heating value of the biomass produced. The microalgae were grown in outdoor pilot-scale ponds under subarctic summer conditions. The impact of culti-vation in a greenhouse climate was also tested for the green-algae consortium; additionally, the variation in species composition over time in the three ponds was investigated. Our results showed that the biomass produced in the consortium/outdoor pond had the greatest potential for bioenergy production because both its carbohy-drates and lipids contents were significantly higher than the biomasses from the consortium/greenhouse and C. vulgaris/outdoor ponds. Although greenhouse conditions significantly increased the consortium biomass's monounsaturated fatty acid content, which is ideal for biodiesel production, an undesirable increase in ash and chemical elements, as well as a reduction in heating value, were also observed. Thus, the placement of the pond inside a greenhouse did not improve the production potential of the green-algae consortium biomass in the current study infrastructure and climate conditions.info:eu-repo/semantics/publishedVersio

    Morphological and cellular organization of green microalgae to cope with cold stress in subarctic environment

    Get PDF
    Microalgae are one of the most widely dispersed living organisms on Earth and can be found even in extreme environments. Especially in such habitats, the microalgal cell wall plays an essential role as it is the first barrier in continuous contact with the surrounding and changing environment. In cold conditions microalgae can show changes in their morphology, also known as phenotypic plasticity which is the ability of an organism to show different phenotypes when exposed to different environmental conditions. In addition, presence or absence of algaenan is thought to be responsible for increase/decrease permeability and stiffness of the cell wall. The aim of this work was to evaluate and compare how microalgae cells can modify their cell wall components and cellular morphology under low-temperature conditions (5 degrees C) and differ during the exponential and stationary phases. Four microalgae species were studied: Coelastrella sp. 3-4, Chlorella vulgaris sp. 13-1, Haematococcus pluvialis, and Scenedesmus sp. B2-2, which were isolated from subarctic locations. Using a histochemical approach in conjunction with light microscopy, cell features such as size, organization and cell wall ornamentation were evaluated. Staining procedures showed changes in biochemical components such as pectins and presence or absence of exopolysaccharides and lipids. Results showed that Coelastrella cultures did not grow under low-temperature conditions. However, Chlorella vulgaris, Haematococcus pluvialis and Scenedesmus species demonstrated a slower growth rate, bigger and rounded cell-shape during cold condition. Furthermore, the latter microalgal strain also showed modification in algaenan presence as one of the main components in cell wall architecture, which can be related to the permeability of cell wall. Changes in other features such as cell organization and cell wall ornamentation were investigated

    Quantitative and qualitative saccharide analysis of North Atlantic brown seaweed by gas chromatography/mass spectrometry and infrared spectroscopy

    Get PDF
    Brown seaweeds contain a variety of saccharides which have potential industrial uses. The most abundant polysaccharide in brown seaweed is typically alginate, consisting of mannuronic (M) and guluronic acid (G). The ratio of these residues fundamentally determines the physicochemical properties of alginate. In the present study, gas chromatography/mass spectrometry (GC/MS) was used to give a detailed breakdown of the monosaccharide species in North Atlantic brown seaweeds. The anthrone method was used for determination of crystalline cellulose. The experimental data was used to calibrate multivariate prediction models for estimation of total carbohydrates, crystalline cellulose, total alginate and alginate M/G ratio directly in dried, brown seaweed using three types of infrared spectroscopy, using relative error (RE) as a measure of predictive accuracy. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) performed well for the estimation of total alginate (RE = 0.12, R2 = 0.82), and attenuated total reflectance (ATR) showed good prediction of M/G ratio (RE = 0.14, R2 = 0.86). Both DRIFTS, ATR and near infrared (NIR) were unable to predict crystalline cellulose and only DRIFTS performed better in determining total carbohydrates. Multivariate spectral analysis is a promising method for easy and rapid characterization of alginate and M/G ratio in seaweed

    Stressing Algae for Biofuel Production: Biomass and Biochemical Composition of Scenedesmus dimorphus and Selenastrum minutum Grown in Municipal Untreated Wastewater

    Get PDF
    Biofuel production using microalgae is a renewable and environmental-friendly alternative to the use of fossil fuels. Microalgae storage lipids are promising resources for biofuel production. In this study, pure strains of the microalgae Scenedesmus dimorphus and Selenastrum minutum were grown in untreated municipal wastewater for six days under mixotrophic conditions. The algae strains were subjected to different stresses such as nutrient deprivation, and 5% (w/v) salinity to trigger lipid production and to study effect on FAME composition. The highest lipid concentrations were found in S. dimorphus (35 and 34%) and in S. minutum (40 and 39%) under nutrient deprivation and 5% salinity, respectively. On the one hand, salt stress decreased biomass production; on the other hand in both S. dimorphus and S. minutum salt stress significantly increased the concentration of saturated fatty acid (SFA) and it decreased the concentration of poly-unsaturated fatty acid (PUFA) contents, which are desirable for the production of good quality biofuel such as biodiesel. Hence our findings show how salt stress could clearly affect FAME composition in short time 1–3 days, greatly improving the FAME quality as source of biofuel

    Influence of hydrothermal carbonization conditions on the porosity, functionality, and sorption properties of microalgae hydrochars

    Get PDF
    Green microalgae is a possible feedstock for the production of biofuels, chemicals, food/feed, and medical products. Large-scale microalgae production requires large quantities of water and nutrients, directing the attention to wastewater as a cultivation medium. Wastewater-cultivated microalgae could via wet thermochemical conversion be valorised into products for e.g., water treatment. In this study, hydrothermal carbonization was used to process microalgae polycultures grown in municipal wastewater. The objective was to perform a systematic examination of how carbonization temperature, residence time, and initial pH affected solid yield, composition, and properties. Carbonization temperature, time and initial pH all had statistically significant effects on hydrochar properties, with temperature having the most pronounced effect; the surface area increased from 8.5 to 43.6 m(2) g(-1) as temperature was increased from 180 to 260 degrees C. However, hydrochars produced at low temperature and initially neutral pH generally had the highest capacity for methylene blue adsorption. DRIFTS analysis of the hydrochar revealed that the pH conditions changed the functional group composition, implying that adsorption was electrostatic interactions driven. This study concludes that un-activated hydrochars from wastewater grown microalgae produced at relatively low hydrothermal carbonization temperatures adsorb methylene blue, despite having low surface area

    Honeybees' physiological and behavioural immunity deficit induced by DW Viruses

    Get PDF
    Item does not contain fulltextThe purpose of the present study was to determine the effect of a spinal cord injury (SCI) on resting vascular resistance in paralyzed legs in humans. To accomplish this goal, we measured blood pressure and resting flow above and below the lesion (by using venous occlusion plethysmography) in 11 patients with SCI and in 10 healthy controls (C). Relative vascular resistance was calculated as mean arterial pressure in millimeters of mercury divided by the arterial blood flow in milliliters per minute per 100 milliliters of tissue. Arterial blood flow in the sympathetically deprived and paralyzed legs of SCI was significantly lower than leg blood flow in C. Because mean arterial pressure showed no differences between both groups, leg vascular resistance in SCI was significantly higher than in C. Within the SCI group, arterial blood flow was significantly higher and vascular resistance significantly lower in the arms than in the legs. To distinguish between the effect of loss of central neural control vs. deconditioning, a group of nine SCI patients was trained for 6 wk and showed a 30% increase in leg blood flow with unchanged blood pressure levels, indicating a marked reduction in vascular resistance. In conclusion, vascular resistance is increased in the paralyzed legs of individuals with SCI and is reversible by training

    A role for microbial selection in frescoes' deterioration in Tomba degli Scudi in Tarquinia, Italy

    Get PDF
    Mural paintings in the hypogeal environment of the Tomba degli Scudi in Tarquinia, Italy, show a quite dramatic condition: the plaster mortar lost his cohesion and a white layer coating is spread over almost all the wall surfaces. The aim of this research is to verify if the activity of microorganisms could be one of the main causes of deterioration and if the adopted countermeasures (conventional biocide treatments) are sufficient to stop it. A biocide treatment of the whole environment has been carried out before the conservative intervention and the tomb has been closed for one month. When the tomb was opened again, we sampled the microorganisms present on the frescoes and we identified four Bacillus species and one mould survived to the biocide treatment. These organisms are able to produce spores, a highly resistant biological form, which has permitted the survival despite the biocide treatment. We show that these Bacillus strains are able to produce calcium carbonate and could be responsible for the white deposition that was damaging and covering the entire surface of the frescoes. Our results confirm that the sanitation intervention is non always resolutive and could even be deleterious in selecting harmful microbial communities

    Incidental extravascular findings in computed tomographic angiography for planning or monitoring endovascular aortic aneurysm repair: Smoker patients, increased lung cancer prevalence?

    Get PDF
    AIMTo validate the feasibility of high resolution computed tomography (HRCT) of the lung prior to computed tomography angiography (CTA) in assessing incidental thoracic findings during endovascular aortic aneurysm repair (EVAR) planning or follow-up.METHODSWe conducted a retrospective study among 181 patients (143 men, mean age 71 years, range 50-94) referred to our centre for CTA EVAR planning or follow-up. HRCT and CTA were performed before or after 1 or 12 mo respectively to EVAR in all patients. All HRCT examinations were reviewed by two radiologists with 15 and 8 years' experience in thoracic imaging. The results were compared with histology, bronchoscopy or follow-up HRCT in 12, 8 and 82 nodules respectively.RESULTSThere were a total of 102 suspected nodules in 92 HRCT examinations, with a mean of 1.79 nodules per patient and an average diameter of 9.2 mm (range 4-56 mm). Eighty-nine out of 181 HRCTs resulted negative for the presence of suspected nodules with a mean smoking history of 10 pack-years (p-y, range 5-18 p-y). Eighty-two out of 102 (76.4%) of the nodules met criteria for computed tomography follow-up, to exclude the malignant evolution. Of the remaining 20 nodules, 10 out of 20 (50%) nodules, suspected for malignancy, underwent biopsy and then surgical intervention that confirmed the neoplastic nature: 4 (20%) adenocarcinomas, 4 (20%) squamous cell carcinomas, 1 (5%) small cell lung cancer and 1 (5%) breast cancer metastasis); 8 out of 20 (40%) underwent bronchoscopy (8 pneumonia) and 2 out of 20 (10%) underwent biopsy with the diagnosis of sarcoidosis.CONCLUSIONHRCT in EVAR planning and follow-up allows to correctly identify patients requiring additional treatments, especially in case of lung cancer
    corecore