518 research outputs found

    Benthic foraminifers and siliceous sponge spicules assemblages in the Quaternary rhodolith rich sediments from Pontine Archipelago shelf

    Get PDF
    The bottom samples (Quaternary in age) of two cores (CS1 and Caro1) collected at 60 and 122 m water depth in the marine area near Ponza Island (Pontine Archipelago, Tyrrhenian Sea) are investigated. In particular, benthic foraminifers and siliceous sponge spicules are considered. The coralline red algae (pralines, boxworks and unattached branches) are abundant in both samples and, particularly, in the CS1 bottom as well as the benthic foraminifers. The siliceous sponge spicules also are very diversified and abundant in the CS1 bottom sample, while in the Caro1 bottom they are rare and fragmented. Benthic foraminiferal assemblage of two samples is dominated by Asterigerinata mamilla and Lobatula lobatula, typical epiphytic species but also able to live on circalittoral detrital seafloors, adapting to an epifaunal lifestyle. Based on these data the bottom of the studied cores represents the upper circalittoral zone, within the present-day depth limit distribution of coralline red algae in the Pontine Archipelago (shallower than 100 m water depth)

    Analysis of ring laser gyroscopes including laser dynamics

    Full text link
    Inertial sensors stimulate very large interest, not only for their application but also for fundamental physics tests. Ring laser gyros, which measure angular rotation rate, are certainly among the most sensitive inertial sensors, with excellent dynamic range and bandwidth. Large area ring laser gyros are routinely able to measure fractions of prad/s, with high duty cycle and bandwidth, providing fast, direct and local measurement of relevant geodetic and geophysical signals. Improvements of a factor 10−10010-100 would open the windows for general relativity tests, as the GINGER project, an Earth based experiment aiming at the Lense-Thirring test at 1%1\% level. However, it is well known that the dynamics of the laser induces non-linearities, and those effects are more evident in small scale instruments. Sensitivity and accuracy improvements are always worthwhile, and in general there is demand for high sensitivity environmental study and development of inertial platforms, where small scale transportable instruments should be used. We discuss a novel technique to analyse the data, aiming at studying and removing those non-linearity. The analysis is applied to the two ring laser prototypes GP2 and GINGERINO, and angular rotation rate evaluated with the new and standard methods are compared. The improvement is evident, it shows that the back-scatter problem of the ring laser gyros is negligible with a proper analysis of the data, improving the performances of large scale ring laser gyros, but also indicating that small scale instruments with sensitivity of nrad/s are feasible.Comment: 9 pages and 7 figure

    Fc receptor-mediated phagocytosis occurs in macrophages at exceedingly low cytosolic Ca2+ levels.

    Get PDF
    Cytosolic free Ca2+ ([Ca2+]i) homeostasis was investigated in mouse peritoneal macrophages and in the macrophage-like cell line J774. [Ca2+]i measurements were performed in both cells in suspension and cells in monolayers loaded with either quin2 or fura-2. Resting [Ca2+]i was 110-140 and 85-120 nM for cell suspensions and monolayers, respectively. There were no significant differences in [Ca2+]i between the two macrophage populations whether quin2 or fura-2 were used as Ca2+ indicators. Addition of heat-aggregated IgG, IgG-coated erythrocyte ghosts, or a rat monoclonal antibody (2.4G2) directed against mouse Fc receptor II induced a rise in [Ca2+]i. This [Ca2+]i increase was consistently observed in J774 and peritoneal macrophage suspensions and in J774 macrophage monolayers; in contrast it was observed inconsistently in peritoneal macrophages in monolayer cultures. The increase in [Ca2+]i induced by ligation of Fc receptors was inhibited totally in macrophages in suspension and by 80% in macrophages in monolayers by a short preincubation of macrophages with PMA; however, phagocytosis itself was unaffected. The effect of reducing cytosolic Ca2+ to very low concentrations on Fc receptor-mediated phagocytosis was also investigated. By incubating macrophages with high concentrations of quin2/AM in the absence of extracellular Ca2+, or by loading EGTA into the cytoplasm, the [Ca2+]i was buffered and clamped to 1-10 nM. Despite this, the phagocytosis of IgG-coated erythrocytes proceeded normally. These observations confirm the report of Young et al. (Young, J. D., S. S. Ko, and Z. A. Cohn. 1984. Proc. Natl. Acad. Sci. USA. 81:5430-5434) that ligation of Fc receptors causes Ca2+ mobilization in macrophages. However, these results confirm and extend the findings of McNeil et al. (McNeil, P. L., J. A. Swanson, S. D. Wright, S. C. Silverstein, and D. L. Taylor. 1986. J. Cell Biol. 102:1586-1592) that a rise in [Ca2+]i is not required for Fc receptor-mediated phagocytosis; and they provide direct evidence that Fc receptor-mediated phagocytosis occurs normally even at exceedingly low [Ca2+]i

    Benthic foraminiferal assemblages and rhodolith facies evolution in post-LGM sediments from the Pontine Archipelago shelf (Central Tyrrhenian Sea, Italy)

    Get PDF
    The seabed of the Pontine Archipelago (Tyrrhenian Sea) insular shelf is peculiar as it is characterized by a mixed siliciclastic–carbonate sedimentation. In order to reconstruct the Late Quaternary paleoenvironmental evolution of the Pontine Archipelago, this study investigates the succession of facies recorded by two sediment cores. For this purpose, benthic foraminifera and rhodoliths assemblages were considered. The two cores (post-Last Glacial Maximum in age) were collected at 60 (CS1) and 122 m (Caro1) depth on the insular shelf off Ponza Island. The paleontological data were compared with seismo-stratigraphic and lithological evidence. The cores show a deepening succession, with a transition from a basal rhodolith-rich biodetritic coarse sand to the surface coralline-barren silty sand. This transition is more evident along core Caro1 (from the bottom to the top), collected at a deeper water depth than CS1. In support of this evidence, along Caro1 was recorded a fairly constant increase in the amount of planktonic foraminiferal and a marked change in benthic foraminiferal assemblages (from Asterigerinata mamilla and Lobatula lobatula assemblage to Cassidulina carinata assemblage). Interestingly, the dating of the Caro1 bottom allowed us to extend to more than 13,000 years BP the rhodolith record in the Pontine Archipelago, indicating the possible presence of an active carbonate factory at that time
    • 

    corecore