24 research outputs found

    Coastal Sea Level Trends from a Joint Use of Satellite Radar Altimetry, GPS and Tide Gauges: Case Study of the Northern Adriatic Sea

    Get PDF
    For the last century, tide gauges have been used to measure sea level change along the world’s coastline. However, tide gauges are heterogeneously distributed and sparse in coverage. The measured sea level changes are also affected by solid-Earth geophysics. Since 1992, satellite radar altimetry technique made possible to measure heights at sea independent of land changes. Recently various efforts started to improve the sea level record reprocessing past altimetry missions to create an almost 30 year-long combined record for sea level research studies. Moreover, coastal altimetry, i.e. the extension of altimetry into the oceanic coastal zone and its exploitation for looking at climate-scale variations of sea level, has had a steady progress in recent years and has become a recognized mission target for present and future satellite altimeters. Global sea level rise is today well acknowledged. On the opposite, the regional and local patterns are much more complicated to observe and explain. Sea level falls in some places and rises in others, as a consequence of natural cycles and anthropogenic causes. As relative sea level height continues to increase, many coastal cities can have the local elevation closer to the flooding line. It is evident that at land-sea interface a single technique is not enough to de-couple land and sea level changes. Satellite radar altimetry and tide gauges would coincide at coast if land had no vertical motion. By noting this fact, the difference of the two independent measurements is a proxy of land motion. In this chapter, we review recent advances in open ocean and coastal altimetry to measure sea level changes close to the coasts over the satellite radar altimetry era. The various methods to measure sea level trends are discussed, with focus on a more robust inverse method that has been tested in the Northern Adriatic Sea, where Global Positioning System (GPS) data are available to conduct a realistic assessment of uncertainties. The results show that the classical approach of estimating Vertical Land Motion (VLM) provides values that are almost half of those provided by the new Linear Inverse Problem With Constraints (LIPWC) method, in a new formulation which makes use of a change of variable (LIPWCCOV). Moreover, the accuracy of the new VLM estimates is lower when compared to the VLM estimated from GPS measurements. The experimental Sea Level Climate Change Initiative (SLCCI) data set (high resolution along track) coastal sea level product (developed within Climate Change Initiative (CCI project) that has been also assessed in the Gulf of Trieste show that the trends calculated with the gridded and along track datasets exhibit some differences, probably due to the different methodologies used in the generation of the products

    Tuning the Model Winds in Perspective of Operational Storm Surge Prediction in the Adriatic Sea

    No full text
    In the Adriatic Sea, the sea surface wind forecasts are often underestimated, with detrimental effects on the accuracy of sea level and storm surge predictions. Among the various causes, this mainly depends on the meteorological forcing of the wind. In this paper, we try to improve an existing numerical method, called “wind bias mitigation”, which relies on scatterometer wind observations to determine a multiplicative factor Δw, whose application to the model wind reduces its inaccuracy with respect to the scatterometer wind. Following four different mathematical approaches, we formulate and discuss seven new expressions of the multiplicative factor. The eight different expressions of the bias mitigation factor, the original one and the seven formulated in this study, are assessed with the aid of four datasets of real sea surface wind events in a variety of sea level conditions in the northern Adriatic Sea, several of which gave rise to high water events in the Venice Lagoon. The statistical analysis shows that some of the seven new formulations of the wind bias mitigation factor are able to lower the model-scatterometer bias with respect to the original formulation. For some other of the seven new formulations, the absolute bias, with respect to scatterometer, of the mitigated model wind field, results lower than that supplied by the unmodified model wind field in 81% of the considered storm surge events in the area of interest, against the 73% of the original formulation of the wind bias mitigation. This represents an 11% improvement in the bias mitigation process, with respect to the original formulation. The best performing of the seven new wind bias mitigation factors, that based on the linear least square regression of the squared wind speed (LLSRE), has been implemented in the operational sea level forecast chain of the Tide Forecast and Early Warning Centre of the Venice Municipality (CPSM), to provide support to the operation of the MO.SE. barriers in Venice

    Small scale properties of the radar backscatter from the sea surface at off nadir angles

    No full text
    Analyses coherent radar backscatter data from the sea surface at C-band and VV polarization, sampled at 300 Hz. The aim is to understand their usefulness in the investigation of the sea surface properties. The variability of the backscatter intensity Ibk at frequencies close to the Bragg frequency suggested a Bragg-like mechanism in the formation of the radar backscatter from patches of Bragg waves randomly distributed in the radar footprint. This led us to consider that both I bk and the associated Doppler frequency fd have to be computed over time intervals of O(0.1) s, the periodicity of the Bragg waves at C-band and 45 degree of incidence. Shorter time intervals would produce unrealistic estimates. This sets the lowest limit of data sampling for further researc

    Improvements of storm surge forecasting in the Gulf of Venice exploiting the potential of satellite data: the ESA DUE eSurge-Venice project

    Get PDF
    The northern Adriatic Sea is affected by storm surges, which often cause the flooding in Venice and the surrounding areas. We present the results of the eSurge-Venice project, funded by the European Space Agency (ESA) in the framework of its Data User Element programme: the project was aimed to demonstrate the potential of satellite data in improving storm surge forecasting, with focus on the Gulf of Venice. The satellite data used were scatterometer wind and altimeter sea level height. Hindcast experiments were conducted to assess the sensitivity of a storm surge model to a model wind forcing modified with scatterometer data and to altimeter retrievals assimilated with a dual 4D-Var system. The modified model wind forcing alone was responsible for a reduction of the mean difference between modelled and observed maximum surge peaks from −15.1 to −8.2 cm, while combining together scatterometer and altimeter data the mean difference further reduced to −6.0 cm. In terms of percent, the improvements in the reduction on the mean differences between modelled and observed surge peaks reaches 46% using only the scatterometer data, and 60% using both scatterometer and altimeter data
    corecore