472 research outputs found
A case study for spacegate point-to-point transportation: Evaluation of a reference end-to-end mission operations and assessment of the associated safety aspects
The ALTEC-conducted Spacegate feasibility study addresses the opportunities offered by the sub-orbital flight with special emphasis to future generation transportation. Pursuing the same systemic methodology of the initial Spacegate definition activities, this paper focuses on some specific aspects of suborbital operations and outlines a top level end-to-end operating cycle for a reference suborbital mission spanning from pre-flight, to flight, re-entry and post landing operations and associated Ground Segment. Special focus is given to identification of suitable locations in Italy for suborbital operations, and to liftoff and re-entry phases; the results of specific simulations are also reported, showing some lift off options and the feasibility of the spiral shaped descent maneuver that improves the pilot controllability of the vehicle during the re-entry phase. Further, this paper outlines within the selected reference mission, the main safety aspects considered as driving factors in planning and implementing future generation transportation; areas such as launch/landing range and relevant risk management/mitigation policies, as well as selection of safety driving criteria in the definition of trajectories and space transition corridors, and capabilities to monitor the vehicle ascent and re-entry will be assessed. Safety regulations will also be evaluated to protect launch range, drive spaceport site selection and consequently the ability of the spaceport to accommodate large numbers of passengers and participants, as well as a number of simultaneous operations such as training, vehicle integration tasks, and passenger preparation for flight. For human flight in general, and in particular for commercial point to point activities at this early stage, it is vital to minimize risk since a fatal accident at the very beginning of flights will put the entire business in jeopardy. The regulatory challenges with regards to safety will also be outlined in this paper, related to executing Spacegate activities in Europe and collaborations with the involved Agencies in the USA and Europe (FAA, ENAC, ENAV, SESAR, EASA) will be explored; in particular, some initiatives have already been started, that include active ALTEC participation to the IAASS Space Safety Technical Committee (SSTC) that was created to contribute to the advancement of the Safety in the area of the "Commercial Suborbital Flight"
Analysis of CTNS gene transcripts in nephropathic cystinosis
Nephropathic cystinosis (NC) is an autosomal recessive disorder caused by mutations of the CTNS gene that encodes for a cystine transmembrane transporter. Several mutations have been described in the coding and promoter regions of the CTNS gene in affected individuals. We selected three patients with NC from two unrelated families, in whom sequence analysis of the CTNS gene detected only one or no mutations. Total RNA was isolated from peripheral blood mononuclear cells or fibroblasts and CTNS transcripts were analyzed. We observed a skipping of exon 5 (85 bp) in two siblings and an intron 9 retention of 75 bp associated with partial replication of exon 9 in the third patient. Genomic DNA analysis of intron regions surrounding exon 5 showed a point mutation in the hypothetical lariat branch site of intron 4 at position –24 (c.141–24 T > C) in the first two patients and a duplication of 266 bp including a part of exon and intron 9 in the third patient. Analysis of CTNS gene transcripts allowed identification of mutations in patients in whom CTNS mutations could not be detected by traditional DNA sequencing. These results support the hypothesis that cystinosis is a monogenic disorder
Characterization of the Etna volcanic emissions through an active biomonitoring technique (moss-bags): Part 1 – Major and trace element composition
Active biomonitoring using moss-bags was applied to an active volcanic environment for the first time. Bioaccumulation originating from atmospheric deposition was evaluated by exposing mixtures of washed and air-dried mosses (Sphagnum species) at 24 sites on Mt. Etna volcano (Italy). Concentrations of major and a large suite of trace elements were analysed by inductively coupled mass and optical spectrometry (ICP-MS and ICP-OES) after total acid digestion. Of the 49 elements analysed those which closely reflect summit volcanic emissions were S, Tl, Bi, Se, Cd, As, Cu, B, Na, Fe, Al. Enrichment factors and cluster analysis allowed clear distinction between volcanogenic, geogenic and anthropogenic inputs that affect the local atmospheric deposition. This study demonstrates that active biomonitoring with moss-bags is a suitable and robust technique for implementing inexpensive monitoring in scarcely accessible and harsh volcanic environments, giving time-averaged quantitative results of the local exposure to volcanic emissions. This task is especially important in the study area because the summit area of Mt. Etna is visited by nearly one hundred thousand tourists each year who are exposed to potentially harmful volcanic emissions
Nitrate, sulphate and chloride contents in public drinking water supplies in Sicily, Italy
Water samples collected from public
drinking water supplies in Sicily were analysed
for electric conductivity and for their chloride,
sulphate and nitrate contents. The samples were
collected as uniformly as possible from throughout the Sicilian territory, with an average sampling density of about one sample for every 7,600
inhabitants. Chloride contents that ranged from
5.53 to 1,302 mg/l were correlated strongly with
electric conductivity, a parameter used as a proxy
for water salinity. The highest values are attributable to seawater contamination along the coasts
of the island. High chloride and sulphate values
attributable to evaporitic rock dissolution were
found in the central part of Sicily. The nitrate
concentrations ranged from 0.05 to 296 mg/l, with
31 samples (4.7% of the total) exceeding the
maximum admissible concentration of 50 mg/l.
Anomalous samples always came from areas of
intensive agricultural usage, indicating a clear anthropogenic origin. The same parameters were
also measured in bottled water sold in Sicily, and
they all were within the ranges for public drinking
water supplies. The calculated mean nitrate intake
from consuming public water supplies (16.1 mg/l)
did not differ significantly from that of bottled
water (15.2 mg/l). Although the quality of public
water supplies needs to be improved by eliminating those that do not comply with the current
drinking water limits, at present it does not justify
the high consumption of bottled water (at least for
nitrate contents)
Nearly free silanols drive the interaction of crystalline silica polymorphs with membranes: Implications for mineral toxicity
Crystalline silica (CS) is a well-known hazardous material that causes severe diseases including silicosis, lung cancer, and autoimmune diseases. However, the hazard associated to crystalline silica is extremely variable and depends on some specific characteristics, including crystal structure and surface chemistry. The crystalline silica polymorphs share the SiO(2) stoichiometry and differentiate for crystal structure. The different crystal lattices in turn expose differently ordered hydroxyl groups at the crystal surface, i.e., the silanols. The nearly free silanols (NFS), a specific population of weakly interacting silanols, have been recently advanced as the key surface feature that governs recognition mechanisms between quartz and cell membrane, initiating toxicity. We showed here that the nearly free silanols occur on the other crystalline silica polymorphs and take part in the molecular interactions with biomembranes. A set of crystalline silica polymorphs, including quartz, cristobalite, tridymite, coesite, and stishovite, was physico-chemically characterized and the membranolytic activity was assessed using red blood cells as model membranes. Infrared spectroscopy in highly controlled conditions was used to profile the surface silanol topochemistry and the occurrence of surface nearly free silanols on crystalline silica polymorphs. All crystalline silica polymorphs, but stishovite were membranolytic. Notably, pristine stishovite did not exhibited surface nearly free silanols. The topochemistry of surface silanols was modulated by thermal treatments, and we showed that the occurrence of nearly free silanols paralleled the membranolytic activity for the crystalline silica polymorphs. These results provide a comprehensive understanding of the structure-activity relationship between nearly free silanols and membranolytic activity of crystalline silica polymorphs, offering a possible clue for interpreting the molecular mechanisms associated with silica hazard and bio-minero-chemical interfacial phenomena, including prebiotic chemistry
Plants as biomonitors for volcanic emissions
Biomonitoring techniques have been widely used in environmental studies to monitor anthropogenic
pollutant. Recently such techniques have been applied also to ascertain the impact of contaminants naturally
released by volcanic activity.
In the present study a biomonitoring surveys has been performed in many different active volcanic systems:
Mt. Etna and Vulcano (Italy), Nisyros (Greece), Nyiragongo (DRC), Masaya (Nicaragua), Gorely (Kamchatka,
Russia). We sampled leaves of different species Betulla aethnensis, Pinus nigra, Populus tremula, Senecio
aethnensis and Rumex aethnensis on Etna, Cistus creticus and salvifolius on Vulcano and Nisyros, Senecio
ssp. on Nyiragongo, a Fern on Masaya and Salix arctica at Gorely. All samples were analyzed by ICP-MS
and ICP-OES for 49 elements after acid digestion with a microwave oven (HNO3 + H2O2).
Major constituents in leaves are K, Ca, Mg, Na, Si, Al and Fe ranging from about 10 3 to 105 ppm.
Manganesium, Sr, Rb, Ba, Zn, B, Cu show also relatively high concentrations (100-103 ppm) while the
remaining elements (As, Bi, Cd, Ce, Co, Cr, Cs, Ga, Li, Mo, Ni, Pb, Sb, Sc, Se, Th, Tl, U, V, Y and lanthanide
series) display much lower values (10-4-101 ppm). Nearly all investigated elements show their highest
concentrations in the samples collected closest to the main degassing vents (open craters, fumarolic fields).
Increased concentrations are also found in the samples collected in the downwind direction where volcanic
emissions are prevailingly dispersed.
Leaves collected along radial transects from the active vents, highlight that the levels of metals decrease
from one to two orders of magnitude with increasing distance from the source. The decrease is stronger for
volatile elements, which are highly enriched in volcanic emissions, (As, Bi, Cd, Cs, Pb, Sb, Tl) than for more
refractory elements (Al, Ba, Sc, Si, Sr, Th, U). The different species of plants show significant differences in
the bioaccumulation processes for most of the analyzed elements, in particular lanthanides, which are
systematically enriched in Rumex leaves. Needles of pine (non-deciduous tree) represent a good tool for
biomonitoring investigation because they are important tracers of accumulation with time.
The high concentrations of many toxic elements in the leaves allow us to consider some of these plants as
highly tolerant species to the volcanic emissions, and suitable for biomonitoring researches further
confirming their strong potential in tracing the impact and geographic distribution of these natural
contaminants
- …