96 research outputs found

    Clinical significance of the buccal fat pad: how to determine the correct surgical indications based on preoperative analysis

    Get PDF
    Background: Despite the multitude of clinical and aesthetic uses, the correct surgical indications for buccal fat pad (BFP) removal have yet to be fully elucidated. Although the procedure is widely performed and promoted for aesthetic purpose, literature lacks of studies accounting for a proper evaluation of patients undergoing BFP removal. Methods: Between 2012 and 2016 patients seeking an improvement of the malar contour by reduction of the submalar prominence have been visited at the Department of Plastic Surgery of the Institution. A preoperative MRI was requested in order to correctly identify the volume of the BFP and the presence of a masseter muscle (MM) hypertrophy. Results: According to clinical examination and the results of the preoperative imaging, patients were offered different treatment options: patients with BFP hypertrophy underwent BFP removal through an itraoral approach; patients with MM hypertrophy received injection of 50 UI of botulinum toxin (BTX). No complications were observed in the postoperative period and all patients were satisfied with the results. Conclusions: According to the experience, midface contouring procedures should take account of both surgeons’ experience, patients’ expectations and anatomical evaluation. As such, there is no given approach suitable for all cases. Suggested visual criteria, clinical examination and imaging analysis are useful in establishing patient’s condition and determining the appropriate methods of treatment to enhance the facial profile

    Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change

    Get PDF
    Addressing the challenges of climate change and durum wheat production is becoming an important driver for food and nutrition security in the Mediterranean area, where are located the major producing countries (Italy, Spain, France, Greece, Morocco, Algeria, Tunisia, Turkey, and Syria). One of the emergent strategies, to cope with durum wheat adaptation, is the exploration and exploitation of the existing genetic variability in landrace populations. In this context, this review aims to highlight the important role of durum wheat landraces as a useful genetic resource to improve the sustainability of Mediterranean agroecosystems, with a focus on adaptation to environmental stresses. We described the most recent molecular techniques and statistical approaches suitable for the identification of beneficial genes/alleles related to the most important traits in landraces and the development of molecular markers for marker-assisted selection. Finally, we outline the state of the art about landraces genetic diversity and signature of selection, already identified from these accessions, for adaptability to the environment

    Biotechnological and digital revolution for climate-smart plant breeding

    Get PDF
    Climate change, associated with global warming, extreme weather events, and increasing incidence of weeds, pests and pathogens, is strongly influencing major cropping systems. In this challenging scenario, miscellaneous strategies are needed to expedite the rate of genetic gains with the purpose of developing novel varieties. Large plant breeding populations, efficient high-throughput technologies, big data management tools, and downstream biotechnology and molecular techniques are the pillars on which next generation breeding is based. In this review, we describe the toolbox the breeder has to face the challenges imposed by climate change, remark on the key role bioinformatics plays in the analysis and interpretation of big “omics„ data, and acknowledge all the benefits that have been introduced into breeding strategies with the biotechnological and digital revolution

    Whole-exome sequencing of selected bread wheat recombinant inbred lines as a useful resource for allele mining and bulked segregant analysis

    Get PDF
    Although wheat (Triticum aestivum L.) is the main staple crop in the world and a major source of carbohydrates and proteins, functional genomics and allele mining are still big challenges. Given the advances in next-generation sequencing (NGS) technologies, the identification of causal variants associated with a target phenotype has become feasible. For these reasons, here, by combining sequence capture and target-enrichment methods with high-throughput NGS re-sequencing, we were able to scan at exome-wide level 46 randomly selected bread wheat individuals from a recombinant inbred line population and to identify and classify a large number of single nucleotide polymorphisms (SNPs). For technical validation of results, eight randomly selected SNPs were converted into Kompetitive Allele-Specific PCR (KASP) markers. This resource was established as an accessible and reusable molecular toolkit for allele data mining. The dataset we are making available could be exploited for novel studies on bread wheat genetics and as a foundation for starting breeding programs aimed at improving different key agronomic traits

    Intra- and Inter-Population Genetic Diversity of “Russello” and “Timilia” Landraces from Sicily: A Proxy towards the Identification of Favorable Alleles in Durum Wheat

    Get PDF
    Climate change and global population growth call for urgent recovery of genetic variation from underexploited or unexplored durum wheat (Triticum turgidum ssp. durum) landraces. Indeed, these untapped genetic resources can be a valuable source of favorable alleles for environmental adaptation and tolerance or resistance to (a)biotic stress. In southern Italy, in addition to the widespread modern and highly productive durum wheat cultivars, various landraces have been rediscovered and reused for their adaptation to sustainable and low-input cropping systems and for their peculiar qualitative characteristics. Sicily is a semiarid area rich in landraces, some of which are independently reproduced by many farmers. Among these, “Timilia” and “Russello” have been independently grown in various areas and are now cultivated, mostly under organic systems, for their hypothetical greater benefits and height, which give them a high level of competitiveness against weeds despite their low yield potential. So far, there is little information on the genetic variations of “Timilia” and “Russello” despite their putative origin from a common funder. This work aims to dissect the genetic variation patterns of two large germplasm collections of “Timilia” and “Russello” using SNP genotyping. The analysis of intra- and inter-population genetic variation and the identification of divergent loci between genetic groups showed that (i) there are two “Russello” genetic groups associated with different Sicilian geographical areas, which differ in important traits related to gluten quality and adaptation, and (ii) the individuals of “Timilia”, although presenting wide genetic variation, have undergone a conservative selection, likely associated with their distinctive traits. This work paves the way for a deeper exploration of the wide genetic diversity in Sicilian landraces, which could be conveniently exploited in future breeding programs, and points out that intra-population genetic diversity should be taken into account when ‘conservation varieties’ are to be registered in national registers of crop

    Almond diversity and homozygosity define structure, kinship, inbreeding, and linkage disequilibrium in cultivated germplasm, and reveal genomic associations with nut and seed weight

    Get PDF
    Almond [Prunus dulcis Miller (D.A. Webb)] is the main tree nut species worldwide. Here, genotyping-by-sequencing (GBS) was applied to 149 almond cultivars from the ex situ collections of the Italian Council for Agricultural Research (CREA) and the Spanish National Research Council (CSIC), leading to the detection of 93,119 single-nucleotide polymorphisms (SNPs). The study of population structure outlined four distinct genetic groups and highlighted diversification between the Mediterranean and Californian gene pools. Data on SNP diversity and runs of homozygosity (ROHs) allowed the definition of kinship, inbreeding, and linkage disequilibrium (LD) decay in almond cultivated germplasm. Four-year phenotypic observations, gathered on 98 cultivars of the CREA collection, were used to perform a genome-wide association study (GWAS) and, for the first time in a crop species, homozygosity mapping (HM), resulting in the identification of genomic associations with nut, shell, and seed weight. Both GWAS and HM suggested that loci controlling nut and seed weight are mostly independent. Overall, this study provides insights on the almond cultivation history and delivers information of major interest for almond genetics and breeding. In a broader perspective, our results encourage the use of ROHs in crop science to estimate inbreeding, choose parental combinations minimizing the risk of inbreeding depression, and identify genomic footprints of selection for specific traits

    Merging genotyping-by-sequencing data from two ex situ collections provides insights on the pea evolutionary history

    Get PDF
    Pea (Pisum sativum L. subsp. sativum) is one of the oldest domesticated species and a widely cultivated legume. In this study, we combined next generation sequencing (NGS) data referring to two genotyping-by-sequencing (GBS) libraries, each one prepared from a different Pisum germplasm collection. The selection of single nucleotide polymorphism (SNP) loci called in both germplasm collections caused some loss of information; however, this did not prevent the obtainment of one of the largest datasets ever used to explore pea biodiversity, consisting of 652 accessions and 22 127 markers. The analysis of population structure reflected genetic variation based on geographic patterns and allowed the definition of a model for the expansion of pea cultivation from the domestication centre to other regions of the world. In genetically distinct populations, the average decay of linkage disequilibrium (LD) ranged from a few bases to hundreds of kilobases, thus indicating different evolutionary histories leading to their diversification. Genome-wide scans resulted in the identification of putative selective sweeps associated with domestication and breeding, including genes known to regulate shoot branching, cotyledon colour and resistance to lodging, and the correct mapping of two Mendelian genes. In addition to providing information of major interest for fundamental and applied research on pea, our work describes the first successful example of integration of different GBS datasets generated from ex situ collections - a process of potential interest for a variety of purposes, including conservation genetics, genome-wide association studies, and breeding

    Genetic approaches to exploit landraces for improvement of Triticum turgidum ssp. durum in the age of climate change

    Get PDF
    Addressing the challenges of climate change and durum wheat production is becoming an important driver for food and nutrition security in the Mediterranean area, where are located the major producing countries (Italy, Spain, France, Greece, Morocco, Algeria, Tunisia, Turkey, and Syria). One of the emergent strategies, to cope with durum wheat adaptation, is the exploration and exploitation of the existing genetic variability in landrace populations. In this context, this review aims to highlight the important role of durum wheat landraces as a useful genetic resource to improve the sustainability of Mediterranean agroecosystems, with a focus on adaptation to environmental stresses. We described the most recent molecular techniques and statistical approaches suitable for the identification of beneficial genes/alleles related to the most important traits in landraces and the development of molecular markers for marker-assisted selection. Finally, we outline the state of the art about landraces genetic diversity and signature of selection, already identified from these accessions, for adaptability to the environment

    A Robust DNA Isolation Protocol from Filtered Commercial Olive Oil for PCR-Based Fingerprinting

    Get PDF
    Extra virgin olive oil (EVOO) has elevated commercial value due to its health appeal, desirable characteristics and quantitatively limited production, and thus it has become an object of intentional adulteration. As EVOOs on the market might consist of a blend of olive varieties or sometimes even of a mixture of oils from different botanical species, an array of DNA-fingerprinting methods have been developed to check the varietal composition of the blend. Starting from a comparison between publicly available DNA extraction protocols, we set up a timely, low-cost, reproducible and effective DNA isolation protocol, which allows an adequate amount of DNA to be recovered even from commercial filtered EVOOs. Then, in order to verify the effectiveness of the DNA extraction protocol herein proposed, we applied PCR-based fingerprinting methods starting from the DNA extracted from three EVOO samples of unknown composition. In particular, genomic regions harboring nine simple sequence repeats (SSRs) and eight genotyping-by-sequencing-derived single nucleotide polymorphism (SNP) markers were amplified for authentication and traceability of the three EVOO samples. The whole investigation strategy herein described might favor producers in terms of higher revenues and consumers in terms of price transparency and food safety
    • 

    corecore