35 research outputs found

    Mesoporous Titania: Synthesis, Properties and Comparison with Non-Porous Titania

    Get PDF
    Some relevant physico-chemical and photocatalytic properties of ordered mesoporous TiO2 as obtained by template-assisted synthesis methods are reported. After a review of the crucial aspects related to different synthesis procedures reported by the literature, the focus is pointed on the (often) superior physico-chemical properties of ordered mesoporous TiO2 with respect to (commercial) bulk TiO2. Those are essentially higher specific surface area and ordered mesoporosity; possibility to control the formation of different crystalline phases by varying the synthesis conditions and possibility to obtain films, nanoparticles with different morphologies and/or materials with hierarchical porosity. Although mesoporous TiO2 is extensively studied for many applications in the fields of photocatalysis, energy and biomedicine, this chapter focuses on the use of mesoporous TiO2 in environmental photocatalysis, by putting in evidence how the physico-chemical properties of the material may affect its photocatalytic behaviour and how mesoporous TiO2 behaves in comparison with commercial TiO2 samples

    Undoped and Fe-Doped Anatase/Brookite TiO2 Mixed Phases, Obtained by a Simple Template-Free Synthesis Method: Physico-Chemical Characterization and Photocatalytic Activity towards Simazine Degradation

    Get PDF
    For the first time, Fe-doping (0.05, 1.0, and 2.5 wt.% Fe) was performed on a high-surface-area anatase/brookite TiO2 by adopting a simple template-free sol-gel synthesis followed by calcination at a mild temperature. The powders’ textural and surface properties were characterized by following a multi-technique approach. XRD analysis showed that the anatase/brookite ratio slightly varied in the Fe-doped TiO2 (from 76.9/23.1 to 79.3/22.7); Fe doping noticeably affected the cell volume of the brookite phase, which decreased, likely due to Fe3+ ions occupying interstitial positions, and retarded the crystallite growth. N2 sorption at −196 °C showed the occurrence of samples with disordered interparticle mesopores, with an increase in the specific surface area from 236 m2 g−1 (undoped TiO2) to 263 m2 g−1 (2.5 wt.% Fe). Diffuse Reflectance UV-Vis spectroscopy showed a progressive decrease in the bandgap energy from 3.10 eV (undoped TiO2) to 2.85 eV (2.5 wt.% Fe). XPS analysis showed the presence of some surface Fe species only at 2.5 wt.% Fe, and accordingly, the ζ-potential measurements showed small changes in the pH at the isoelectric point. The photocatalytic degradation of simazine (a persistent water contaminant) both under UV and simulated solar light was performed as a probe reaction. Under UV light, Fe-doping improved simazine degradation in the sample at 0.05 wt.% Fe, capable of degrading ca. 77% simazine. Interestingly, the undoped TiO2 was also active both under UV and 1 SUN. This is likely due to the occurrence of anatase/brookite heterojunctions, which help stabilize the photogenerated electrons/holes

    Application of reverse micelle sol-gel synthesis for bulk doping and heteroatoms Surface Enrichment in Mo-Doped TiO 2 nanoparticles

    Get PDF
    TiO 2 nanoparticles containing 0.0, 1.0, 5.0, and 10.0 wt.% Mo were prepared by a reverse micelle template assisted sol-gel method allowing the dispersion of Mo atoms in the TiO 2 matrix. Their textural and surface properties were characterized by means of X-ray powder diffraction, micro-Raman spectroscopy, N 2 adsorption/desorption isotherms at -196 °C, energy dispersive X-ray analysis coupled to field emission scanning electron microscopy, X-ray photoelectron spectroscopy, diffuse reflectance UV-Vis spectroscopy, and ζ-potential measurement. The photocatalytic degradation of Rhodamine B (under visible light and low irradiance) in water was used as a test reaction as well. The ensemble of the obtained experimental results was analyzed in order to discover the actual state of Mo in the final materials, showing the occurrence of both bulk doping and Mo surface species, with progressive segregation of MoO x species occurring only at a higher Mo content

    Pure and Fe-doped mesoporous titania catalyse the oxidation of acid orange 7 by H2O2 under different illumination conditions: Fe doping improves photocatalytic activity under simulated solar light

    Get PDF
    A sample of mesoporous TiO2 (MT, specific surface area = 150 m2\uc2\ub7g\ue2\u88\u921) and two samples of MT containing 2.5 wt.% Fe were prepared by either direct synthesis doping (Fe2.5-MTd) or impregnation (Fe2.5-MTi). Commercial TiO2 (Degussa P25, specific surface area = 56 m2\uc2\ub7g\ue2\u88\u921) was used both as a benchmark and as a support for impregnation with either 0.8 or 2.5 wt.% Fe (Fe0.80-IT and Fe2.5-IT). The powders were characterized by X-ray diffraction, N2 isotherms at \ue2\u88\u92196\ue2\u97\ua6C, Energy Dispersive X-ray (EDX) Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Diffuse Reflectance (DR) ultra-violet (UV)-Vis and M\uc3\ub6ssbauer spectroscopies. Degradation of Acid Orange 7 (AO7) by H2O2 was the test reaction: effects of dark-conditions versus both UV and simulated solar light irradiation were considered. In dark conditions, AO7 conversion was higher with MT than with Degussa P25, whereas Fe-containing samples were active in a (slow) Fenton-like reaction. Under UV light, MT was as active as Degussa P25, and Fe doping enhanced the photocatalytic activity of Fe2.5-MTd; Fe-impregnated samples were also active, likely due to the occurrence of a photo-Fenton process. Interestingly, the Fe2.5-MTd sample showed the best performance under solar light, confirming the positive effect of Fe doping by direct synthesis with respect to impregnation

    Effect of RE3+ on Structural Evolution of Rare-Earth Carbonates Synthesized by Facile Hydrothermal Treatment

    Get PDF
    In this work, nanoparticles of cerium hydroxycarbonates were synthesized by a facile hydrothermal treatment at 120°C with ammonium carbonate as the precipitating/mineralizer agent in diluted solution. The as-formed amorphous coprecipitate undergoes several morphological and structural modifications as a function of the duration of the hydrothermal treatment, leading after 8 h to the formation of monosized nanoparticles of hexagonal CeCO3OH. A similar behavior has been found when neodymium-based precursors are used as well, whereas the same treatment produces very different results by using different lanthanides-based precursors in terms of formed phases and morphologies, thus leading to the formation of pure tengerite-type structure phases, biphasic systems (tengerite type and hexagonal), or even entirely amorphous systems. Furthermore, the hydrothermal transformation is influenced by the redox behavior of the rare-earth cation (i.e., cerium) too, eventually resulting in the formation of fluorite-like structures. Therefore, a specific pathway of Ce(III) precursor transformations during hydrothermal treatment is proposed in this paper. Definitely, our results show that ammonium carbonate can be used as the precipitating/mineralizer agent to obtain cerium, doped-cerium, and neodymium hydroxycarbonates, which show excellent morphologies (i.e., characterized by spherical, nanosized particles with monomodal size distribution). Therefore, they can be used as optimal precursors for oxide powders. Conversely, when tengerite-type carbonate precursors are formed, their morphology is characterized by large and acicular particles

    Simulated Moon Agglutinates Obtained from Zeolite Precursor by Means of a Low-Cost and Scalable Synthesis Method

    Get PDF
    A practical, inexpensive, and scalable synthesis method, based on the Fe2+ exchange of two commercial zeolites (i.e., Na-A and Na-X) followed by reductive thermal treatment at 1023 K, allowed obtaining nanocomposites where Fe0 nanoparticles are dispersed within an agglutinitic glassy matrix stemming from the amorphization of the zeolite precursor. The materials were characterized by means of atomic absorption spectrometry, X-ray powder diffraction followed by Rietveld analysis, transmission electron microscopy, N2 adsorption/desorption isotherms at 77 K, measurements of grain size distribution, magnetic properties measurements, broadband dielectric spectroscopy, and DC conductivity measurements. The physicochemical characterization showed that the final nanocomposites could be suitable as a new type of “simulated” Moon agglutinate, a component that is lacking in most of the current lunar regolith/soil simulants

    Nanomaterials for the Abatement of Pharmaceuticals and Personal Care Products from Wastewater

    Get PDF
    In this short-review, the most common types of both pharmaceutical and personal care products (PPCP, a class of “emerging pollutants”) are considered, as well as some of the most frequent methods for their removal that envisage the use of nanomaterials. The nanomaterials used in conservative methods (namely, reverse osmosis, nanofiltration and adsorption) are basically nanoporous solids. Non-conservative methods, which include photocatalysis and Fenton reaction, are currently considered more promising than conservative ones, as the former allow the (at least) partial degradation of the original molecules into more biodegradable by-products, which can be further abated by subsequent biological treatments, whereas the former are not efficient for the removal of small quantities of pollutants and have to be regenerated. Keywords: emerging pollutants; PPCPs; photocatalysis; nanomaterialsFondazione Cariplo (Grant 2015–0186

    Role of pH in the Aqueous Phase Reactivity of Zerovalent Iron Nanoparticles with Acid Orange 7, a Model Molecule of Azo Dyes

    Get PDF
    The effect of both pH and surface oxidation of nanoparticles is studied on the interaction between a commercial slurry of Nanoscale Zerovalent Iron (NZVI) and the azo dye Acid Orange 7 (AO7). NZVI is a reducing agent used for the degradation of several pollutants, including azo dyes: during pollutant degradation, it undergoes progressive oxidation and dissolution. Though it is generally acknowledged that NZVI consists of core-shell nanoparticles, where the core of metallic iron is covered by shell, it still remains a poorly defined system. In this work, the solid fraction recovered by filtration and drying was characterized by means of XRD diffraction with Rietveld refinement, N2 isotherms at 77 K, FE-SEM and TEM observation, EDX analysis, and IR spectroscopy. Powders were obtained from both the parent slurry and the same slurry pretreated with HCl in order to remove shell, finally reactivating the nanoparticles. The aforementioned physicochemical characterization allowed figuring out some correlations between the properties of the studied nanomaterial and the processes occurring when it is in contact with AO7 in aqueous phase. The type of interaction occurring within the NZVI/AO7 system (adsorption and type of redox reactions) strongly depends not only on the pH of the starting solution, but also on the surface oxidation of the nanoparticles
    corecore