239 research outputs found

    Ex-vivo recruitment and x-ray assessment of donor lungs in a challenging retrieval from a donor supported by lvad using the portable normothermic perfusion system: A case report

    Get PDF
    Lung transplantation (LTx) is limited by the shortage of suitable donors. To overcome this problem, many programs have begun to use donors with extended criteria (marginal donors). However, brain-dead patients with implanted mechanical circulatory support system have rarely been considered as potential lung donors. This case demonstrates the feasibility of lung transplantations from organ donors supported by a mechanical circulatory support system despite the possible difficulties of lung retrieval. CASE PRESENTATION: Our case presents a successful procurement and bilateral lung transplantation from a donor supported by a left ventricular assist device (LVAD) who experienced an intraoperatively haemodynamic complication. The use of portable normothermic perfusion device let us to reduce ischemic injury and assess these marginal donor lungs helping us to determine the clinical suitability for transplantation. Given our extensive experience with the device instrumentation and management, the EVLP process was uneventful with excellent post-transplant course. CONCLUSIONS: This case report demonstrates the feasibility of lung transplantations from organ donors supported by a mechanical circulatory support system using the portable normothermic perfusion platform to assess and preserve these donor lungs

    "iCub, We Forgive You!" Investigating Trust in a Game Scenario with Kids

    Get PDF
    This study presents novel strategies to investigate the mutual influence of trust and group dynamics in children-robot interaction. We implemented a game-like experimental activity with the humanoid robot iCub and designed a questionnaire to assess how the children perceived the interaction. We also aim to verify if the sensors, setups, and tasks are suitable for studying such aspects. The questionnaires' results demonstrate that youths perceive iCub as a friend and, typically, in a positive way. Other preliminary results suggest that, generally, children trusted iCub during the activity and, after its mistakes, they tried to reassure it with sentences such as: "Don't worry iCub, we forgive you". Furthermore, trust towards the robot in group cognitive activity appears to change according to gender: after two consecutive mistakes by the robot, girls tended to trust iCub more than boys. Finally, no significant difference has been evidenced between different age groups across points computed from the game and the self-reported scales. The tool we proposed is suitable for studying trust in human-robot interaction (HRI) across different ages and seems appropriate to understand the mechanism of trust in group interactions

    Detecting Biological Motion for Human-Robot Interaction: A Link between Perception and Action

    Get PDF
    One of the fundamental skills supporting safe and comfortable interaction between humans is their capability to understand intuitively each other's actions and intentions. At the basis of this ability is a special-purpose visual processing that human brain has developed to comprehend human motion. Among the first "building blocks" enabling the bootstrapping of such visual processing is the ability to detect movements performed by biological agents in the scene, a skill mastered by human babies in the first days of their life. In this paper, we present a computational model based on the assumption that such visual ability must be based on local low-level visual motion features, which are independent of shape, such as the configuration of the body and perspective. Moreover, we implement it on the humanoid robot iCub, embedding it into a software architecture that leverages the regularities of biological motion also to control robot attention and oculomotor behaviors. In essence, we put forth a model in which the regularities of biological motion link perception and action enabling a robotic agent to follow a human-inspired sensory-motor behavior. We posit that this choice facilitates mutual understanding and goal prediction during collaboration, increasing the pleasantness and safety of the interactio

    Modeling Visual Features to Recognize Biological Motion: A Developmental Approach

    Get PDF
    In this work we deal with the problem of designing and developing computational vision models – comparable to the early stages of the human development – using coarse low-level information. More specifically, we consider a binary classification setting to characterize biological movements with respect to non-biological dynamic events. To this purpose, our model builds on top of the optical flow estimation, and abstract the representation to simulate the limited amount of visual information available at birth. We take inspiration from known biological motion regularities explained by the Two-Thirds Power Law, and design a motion representation that includes different low-level features, which can be interpreted as the computational counterpart of the elements involved in the law. Our reference application is human-machine interaction, thus the experimental analysis is conducted on a set of videos depicting two different subjects performing a repertoire of dynamic gestures typical of such a setting (e.g. lifting an object, pointing, ...). Two slightly different viewpoints are considered. The contribution of our work is twofold. First, we show that the effects of the Two-Thirds Power Law can be appreciates on a video analysis setting. Second, we prove that, although the coarse motion representation, our model allows us to reach biological motion classification performances (around 89%) which are reminiscent of the abilities of very young babies. Moreover, our model shows tolerance to view-point changes

    Human- or object-like? Cognitive anthropomorphism of humanoid robots

    Get PDF
    Across three experiments (N = 302), we explored whether people cognitively elaborate humanoid robots as human- or object-like. In doing so, we relied on the inversion paradigm, which is an experimental procedure extensively used by cognitive research to investigate the elaboration of social (vs. non-social) stimuli. Overall, mixed-model analyses revealed that full-bodies of humanoid robots were subjected to the inversion effect (body-inversion effect) and, thus, followed a configural processing similar to that activated for human beings. Such a pattern of finding emerged regardless of the similarity of the considered humanoid robots to human beings. That is, it occurred when considering bodies of humanoid robots with medium (Experiment 1), high and low (Experiment 2) levels of human likeness. Instead, Experiment 3 revealed that only faces of humanoid robots with high (vs. low) levels of human likeness were subjected to the inversion effects and, thus, cognitively anthropomorphized. Theoretical and practical implications of these findings for robotic and psychological research are discussed

    Depuration Capacity of Mussels (Mytilus galloprovincialis) in Presence of Marteilia Spp. Parasites

    Get PDF
    Bivalve molluscs are filter-feeding organisms present in the water column: during their activity, they could retain micro-organisms that are potentially dangerous to human health. For this reason, EU Regulations may require that a purification treatment be performed prior to bivalve trade. The length of the purification process could be affected by stress factors, such as parasitic infections. The purpose of this study was to determine if the presence of Marteilia spp. parasite in shellfish could modify time and efficacy of their microbiological purification treatment, in order to set up specific protocols. Lysosomal membrane stability, phagocytosis capacity, granulocyte/hyalinocyte rate and neutral lipid accumulation are biomarkers used to evaluate shellfish physiological state. These biomarkers were used to exclude any differences caused by stressor factors that could affect the purification results. Mussels were sampled from two different production areas. The presence or absence of parasites was confirmed by cytological test. Both groups of parasitized and non-parasitized mussels were contaminated with E.coli: they were then sampled for microbiological analyses and tested for biomarkers for up to 70 hours of purification. Parasitized and non-parasitized molluscs did not show any differences in levels of E. coli after 12, 24, 36, 48 and 70 hours of depuration. In relation to biomarkers, mussels seem to react to Lysosomal membrane stability in presence of Marteilia. The present study shows that the presence of Marteilia spp. does not affect the purification rate of mussels

    A constitutive active MAPK/ERK pathway due to BRAFV600E positively regulates AHR pathway in PTC

    Get PDF
    The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor mediating the toxicity and tumor-promoting properties of dioxin. AHR has been reported to be overexpressed and constitutively active in a variety of solid tumors, but few data are currently available concerning its role in thyroid cancer. In this study we quantitatively explored a series of 51 paired-normal and papillary thyroid carcinoma (PTC) tissues for AHR-related genes. We identified an increased AHR expression/activity in PTC, independently from its nuclear dimerization partner and repressor but strictly related to a constitutive active MAPK/ERK pathway. The AHR up-regulation followed by an increased expression of AHR target genes was confirmed by a meta-analysis of published microarray data, suggesting a ligand-independent active AHR pathway in PTC. In-vitro studies using a PTC-derived cell line (BCPAP) and HEK293 cells showed that BRAF(V600E) may directly modulate AHR localization, induce AHR expression and activity in an exogenous ligand-independent manner. The AHR pathway might represent a potential novel therapeutic target for PTC in the clinical practice

    Detection of circulating immunosuppressive cytokines in malignant pleural mesothelioma patients for prognostic stratification.

    Get PDF
    Abstract Background No data on circulating biomarkers for the prognostic stratification of Malignant Pleural Mesothelioma (MPM) patients are available. We prospectively explored the prognostic role of circulating monocyte and cytokine levels and their dynamic change during chemotherapy. Patients and Methods MPM patients receiving a first line treatment based on a platinum compound plus pemetrexed were eligible. Blood samples were collected at the baseline and at the end of induction chemotherapy. CCL-2, IL-10 and TGF-β levels in plasma were quantified by Enzyme-Linked Immunosorbent Assay (ELISA); white blood cells, monocytes and platelets were evaluated by blood count test. Results Thirty-one patients were included in the study. Median overall survival (OS) was 12.13 months versus 9.6 months in patients with lower and higher monocytes count, respectively (p value = 0.02). We further stratified patients according to a combined score based on the association of IL-10, TGF-β levels and monocytes count. High combined score was associated with shorter OS and PFS in univariate and multivariate analysis. Chemotherapy induced an increase in monocytes, IL-10, but not TGF-β levels. Conclusion The prognostic value of circulating levels of multiple immunosuppressive cytokines and inflammatory cells should be confirmed in a wider validation set of MPM patients

    Extended criteria donor lung reconditioning with the organ care system lung: a single institution experience

    Get PDF
    Lung transplantation is a life-saving procedure limited by donor's availability. Lung reconditioning by ex vivo lung perfusion represents a tool to expand the donor pool. In this study, we describe our experience with the OCS\u2122 Lung to assess and recondition extended criteria lungs. From January 2014 to October 2016, of 86 on-site donors evaluated, eight lungs have been identified as potentially treatable with OCS\u2122 Lung. We analyzed data from these donors and the recipient outcomes after transplantation. All donor lungs improved during OCS perfusion in particular regarding the PaO2/FiO2 ratio (from 340 mmHg in donor to 537 mmHg in OCS) leading to lung transplantation in all cases. Concerning postoperative results, primary graft dysfunction score 3 at 72 h was observed in one patient, while median mechanical ventilation time, ICU, and hospital stay were 60 h, 14 and 36 days respectively. One in-hospital death was recorded (12.5%), while other two patients died during follow-up leading to 1-year survival of 62.5%. The remaining five patients are alive and in good conditions. This case series demonstrates the feasibility and value of lung reconditioning with the OCS\u2122 Lung; a prospective trial is underway to validate its role to safely increase the number of donor lungs. \ua9 2018 Steunstichting ESO

    ZnO Tetrapods for Label-Free Optical Biosensing: Physicochemical Characterization and Functionalization Strategies

    Get PDF
    In this study, we fabricated three different ZnO tetrapodal nanostructures (ZnO-Ts) by a combustion process and studied their physicochemical properties by different techniques to evaluate their potentiality for label-free biosensing purposes. Then, we explored the chemical reactivity of ZnO-Ts by quantifying the available functional hydroxyl groups (–OH) on the transducer surface necessary for biosensor development. The best ZnO-T sample was chemically modified and bioconjugated with biotin as a model bioprobe by a multi-step procedure based on silanization and carbodiimide chemistry. The results demonstrated that the ZnO-Ts could be easily and efficiently biomodified, and sensing experiments based on the streptavidin target detection confirmed these structures’ suitability for biosensing applications
    • …
    corecore