147 research outputs found

    Microglial ‘fat shaming’ in development and disease

    Full text link
    Neuronal-immune interactions are known to play crucial roles in brain development and homoeostasis. Of great relevance in this context are microglia, brain macrophages that phagocytose neurons that die during development, and many neurological disorders. Single-cell RNA sequencing methods have significantly advanced our understanding of microglial heterogeneity and transcriptional response to environmental changes. Here, we review recent work showing how microglia adopt a similar molecular signature during development and disease characterised by the expression of genes linked to phagocytosis and lipid uptake and metabolism. These studies show that in many neurodegenerative conditions, microglia accumulate cholesterols and lipid-rich debris, pointing to lipid processing and transport as promising targets for developing new therapeutical treatments against neurodegenerative disorders

    Glial Cell Development and Function in the Zebrafish Central Nervous System

    Get PDF
    Over the past decades the zebrafish has emerged as an excellent model organism with which to study the biology of all glial cell types in nervous system development, plasticity, and regeneration. In this review, which builds on the earlier work by Lyons and Talbot in 2015, we will summarize how the relative ease to manipulate the zebrafish genome and its suitability for intravital imaging have helped understand principles of glial cell biology with a focus on oligodendrocytes, microglia, and astrocytes. We will highlight recent findings on the diverse properties and functions of these glial cell types in the central nervous system and discuss open questions and future directions of the field.</p

    A role for the centrosome in regulating the rate of neuronal efferocytosis by microglia in vivo

    Full text link
    During brain development, many newborn neurons undergo apoptosis and are engulfed by microglia, the tissue-resident phagocytes of the brain, in a process known as efferocytosis. A hallmark of microglia is their highly branched morphology characterized by the presence of numerous dynamic extensions that these cells use for scanning the brain parenchyma and engulfing unwanted material. The mechanisms driving branch formation and apoptotic cell engulfment in microglia are unclear. By taking a live-imaging approach in zebrafish, we show that while microglia generate multiple microtubule-based branches, they only successfully engulf one apoptotic neuron at a time. Further investigation into the mechanism underlying this sequential engulfment revealed that targeted migration of the centrosome into one branch is predictive of phagosome formation and polarized vesicular trafficking. Moreover, experimentally doubling centrosomal numbers in microglia increases the rate of engulfment and even allows microglia to remove two neurons simultaneously, providing direct supporting evidence for a model where centrosomal migration is a rate-limiting step in branch-mediated efferocytosis. Conversely, light-mediated depolymerization of microtubules causes microglia to lose their typical branched morphology and switch to an alternative mode of engulfment, characterized by directed migration towards target neurons, revealing unexpected plasticity in their phagocytic ability. Finally, building on work focusing on the establishment of the immunological synapse, we identified a conserved signalling pathway underlying centrosomal movement in engulfing microglia

    Transient Receptor Potential Ankyrin 1 (TRPA1) Methylation and Chronic Pain: A Systematic Review

    Get PDF
    Background and objective: Chronic pain represents a major global health issue in terms of psycho-physiological, therapeutic, and economic burden, not limited to adults but also to the pediatric age. Despite its great impact, its molecular mechanisms have still not been completely unraveled. Focusing on the impact of epigenetics in the pain complex trait, we assessed the association between chronic pain and the methylation pattern of TRPA1, a key gene related to pain sensitivity. Methods: We conducted a systematic review retrieving articles from three different databases. After deduplication, 431 items were subjected to manual screening, and then 61 articles were selected and screened again. Of these, only six were maintained for meta-analysis and analyzed using specific R packages. Results: Six articles were divided into two groups (group 1: comparison of mean methylation levels between healthy subjects and patients with chronic pain; group 2: correlation between mean methylation levels and pain sensation). A non-significant mean difference was obtained from the analysis of group 1 with a value of 3.97 (95% C.I. -7.79; 15.73). Analysis of group 2 showed a high level of variability between studies (correlation = 0.35, 95% C.I. -0.12; 0.82) due to their heterogeneity (I2 = 97%, p < 0.01). Conclusions: Despite the high variability observed in the different studies analyzed, our results suggest that hypermethylation and increased pain sensitivity could be connected, possibly due to the variation of TRPA1 expression

    Urgent Hospitalizations Related to Viral Respiratory Disease in Children during Autumn and Winter Seasons 2022/2023

    Get PDF
    Aim: The loosening of social distancing measures over the past two years has led to a resurgence of seasonal epidemics associated with respiratory viral infections in children. We aim to describe the impact of such infections through urgent hospitalizations in a pediatric emergency department. Methods: We performed a retrospective review of medical records of all children and adolescents with a positive nasal swab admitted at the children's hospital IRCCS Burlo Garofolo of Trieste, in Italy, from September 2021 to March 2022, and September 2022 to March 2023. Results: Respiratory Syncytial Virus and Influenza viruses accounted for up to 55% of hospitalizations for respiratory infections during the study periods. During the last season, the number of hospitalizations related to the Influenza virus was five times higher than those related to SARS-CoV-2 (25% vs. 5%). Respiratory Syncytial Virus was associated with a greater need for respiratory support, mostly HFNC (High Flow Nasal Cannula). Conclusions: Respiratory Syncytial Virus and Influenza virus had a more significant impact on urgent hospitalizations during the past wintery seasons than SARS-CoV-2

    Timeline of diagnosed pain causes in children with severe neurological impairment

    Get PDF
    Objective: Pain's causes in children with severe cognitive impairment may be challenging to diagnose. This study aimed to investigate if there is a relationship between pain causes and the age of children. Methods: We conducted a multicenter retrospective study in three Italian Pediatric Units. Eligible subjects were patients from 1 to 18 years with severe neurological impairment. We collected data regarding diagnoses, pain causes and medical or surgical procedures. The timing of pain episodes was categorized into age-related periods: infants and toddlers (0-24 months), preschool children (3-5 years), schoolchildren (6-12 years), and adolescents (13-17 years). Results: Eighty children with severe neurological impairment were enrolled. The mean age was 11 years (±5.8). Gastroenterological pain was most common in the first years of life (p = 0.004), while orthopaedic and tooth pain was the most typical in schoolchildren and adolescents (p = 0.001 and p = 0.02). Concerning surgical procedures, PEG placement and gastric fundoplication were significantly more common in the first 5 years of age (p = 0.03), and heart surgery was typical of infants (p = 0.04). Orthopaedic surgery was more commonly reported in older children and adolescents (p < 0.001). Conclusions: Some causes of pain are more frequent in children with severe neurological impairment in defined age-related periods. Specific age-related pain frequencies may help physicians in the diagnostic approach

    MICA-129 dimorphism and soluble MICA are associated with the progression of multiple myeloma

    Get PDF
    Natural killer (NK) cells are immune innate effectors playing a pivotal role in the immunosurveillance of multiple myeloma (MM) since they are able to directly recognize and kill MM cells. In this regard, among activating receptors expressed by NK cells, NKG2D represents an important receptor for the recognition of MM cells, being its ligands expressed by tumor cells, and being able to trigger NK cell cytotoxicity. The MHC class I-related molecule A (MICA) is one of the NKG2D ligands; it is encoded by highly polymorphic genes and exists as membrane-bound and soluble isoforms. Soluble MICA (sMICA) is overexpressed in the serum of MM patients, and its levels correlate with tumor progression. Interestingly, a methionine (Met) to valine (Val) substitution at position 129 of the α2 heavy chain domain classifies the MICA alleles into strong (MICA-129Met) and weak (MICA-129Val) binders to NKG2D receptor. We addressed whether the genetic polymorphisms in the MICA-129 alleles could affect MICA release during MM progression. The frequencies of Val/Val, Val/Met, and Met/Met MICA-129 genotypes in a cohort of 137 MM patients were 36, 43, and 22%, respectively. Interestingly, patients characterized by a Val/Val genotype exhibited the highest levels of sMICA in the sera. In addition, analysis of the frequencies of MICA-129 genotypes among different MM disease states revealed that Val/Val patients had a significant higher frequency of relapse. Interestingly, NKG2D was downmodulated in NK cells derived from MICA-129Met/Met MM patients. Results obtained by structural modeling analysis suggested that the Met to Val dimorphism could affect the capacity of MICA to form an optimal template for NKG2D recognition. In conclusion, our findings indicate that the MICA-129Val/Val variant is associated with significantly higher levels of sMICA and the progression of MM, strongly suggesting that the usage of soluble MICA as prognostic marker has to be definitely combined with the patient MICA genotype
    • …
    corecore