2,026 research outputs found

    Conformal Quantitative Predictive Monitoring of STL Requirements for Stochastic Processes

    Full text link
    We consider the problem of predictive monitoring (PM), i.e., predicting at runtime the satisfaction of a desired property from the current system's state. Due to its relevance for runtime safety assurance and online control, PM methods need to be efficient to enable timely interventions against predicted violations, while providing correctness guarantees. We introduce \textit{quantitative predictive monitoring (QPM)}, the first PM method to support stochastic processes and rich specifications given in Signal Temporal Logic (STL). Unlike most of the existing PM techniques that predict whether or not some property ϕ\phi is satisfied, QPM provides a quantitative measure of satisfaction by predicting the quantitative (aka robust) STL semantics of ϕ\phi. QPM derives prediction intervals that are highly efficient to compute and with probabilistic guarantees, in that the intervals cover with arbitrary probability the STL robustness values relative to the stochastic evolution of the system. To do so, we take a machine-learning approach and leverage recent advances in conformal inference for quantile regression, thereby avoiding expensive Monte-Carlo simulations at runtime to estimate the intervals. We also show how our monitors can be combined in a compositional manner to handle composite formulas, without retraining the predictors nor sacrificing the guarantees. We demonstrate the effectiveness and scalability of QPM over a benchmark of four discrete-time stochastic processes with varying degrees of complexity

    Anaesthetics modulate tumour necrosis factor α: effects of L-carnitine supplementation in surgical patients. Preliminary results.

    Get PDF
    Both anaesthetics and surgical trauma could strongly affect the production of tumour necrosis factor α (TNFα). During in vitro experiments the authors found that anaesthetics modulate the production of TNFα by peripheral blood mononuclear cells. Notably, Pentothal strongly increased the production of the cytokine as compared to both lipopolysacchride treated and control mononuclear cells, whereas in supernatants from Leptofen driven mononuclear cells TNFα was strongly reduced. On the other hand, Pavulon did not significantly affect the cytokine production. In the in vivo study, in an attempt to ameliorate the metabolic response to surgical trauma, L-carnitine was administered to 20 surgical patients, then the circulating TNFα was measured. The results indicate that the levels of circulating TNFα were strongly increased following surgery and that L-carnitine administration resulted in a strong reduction of TNFα. Thus, the data suggest that L-carnitine could be helpful in protecting surgical patients against dysmetabolism dependent on dysregulated production of TNFα

    Air Pollution Removal by Green Infrastructures and Urban Forests in the City of Florence

    Get PDF
    Abstract We investigated the potential performance of air pollution removal by the green infrastructures and urban forests in the city of Florence, central Italy, with a focus on the two most detrimental pollutants for human health: particulate (PM 10 ) and ozone (O 3 ). The spatial distribution of green infrastructures was mapped using remote sensing data. A spatial modeling approach using vegetation indices, Leaf Area Index, and local pollution concentration data was applied to estimate PM 10 and O 3 removal. The results are discussed to highlight the role and potential of green infrastructures and urban forests in improving air quality in Southern European cities

    Hyaluronan delivery by polymer demixing in polysaccharide-based hydrogels and membranes for biomedical applications

    Get PDF
    Alginate-based membranes containing hyaluronic acid (HA) were manufactured by freeze-drying calcium-reticulated hydrogels. The study of the distribution of the two macromolecules within the hydrogel enabled to highlight a polymer demixing mechanism that tends to segregate HA in the external parts of the constructs. Resistance and pliability of the membranes were tuned, while release and degradation studies enabled to quantify the diffusion of both polysaccharides in physiological solution and to measure the viable lifetime of the membranes. Biological studies in vitro proved that the liquid extracts from the HA-containing membranes stimulate wound healing and that fibroblasts are able to colonize the membranes. Overall, such novel alginate-HA membranes represent a promising solution for several medical needs, in particular for wound treatment, giving the possibility to provide an in situ administration of HA from a resorbable device

    VanA type enterococci from humans, animals and food: species distribution, population structure, Tn1546-typing and location, and virulence determinants

    Get PDF
    VanA-type human (n = 69), animal (n = 49), and food (n =36) glycopeptide-resistant enterococci (GRE) from different geographic areas were investigated to study their possible reservoirs and transmission routes. Pulsed-field gel electrophoresis (PFGE) revealed two small genetically related clusters, M39 (n = 4) and M49 (n = 13), representing Enterococcus faecium isolates from animal and human feces and from clinical and fecal human samples. Multilocus sequence typing showed that both belonged to the epidemic lineage of CC17. purK allele analysis of 28 selected isolates revealed that type 1 was prevalent in human strains (8/11) and types 6 and 3 (14/15) were prevalent in poultry (animals and meat). One hundred and five of the 154 VanA GRE isolates, encompassing different species, origins, and PFGE types, were examined for Tn1546 type and location (plasmid or chromosome) and the incidence of virulence determinants. Hybridization of S1- and I-CeuI-digested total DNA revealed a plasmid location in 98% of the isolates. Human intestinal and animal E. faecium isolates bore large (>150 kb) vanA plasmids. Results of PCR-restriction fragment length polymorphism and sequencing showed the presence of prototype Tn1546 in 80% of strains and the G-to-T mutation at position 8234 in three human intestinal and two pork E. faecium isolates. There were no significant associations (P > 0.5) between Tn1546 type and GRE source or enterococcal species. Virulence determinants were detected in all reservoirs but were significantly more frequent (P < 0.02) among clinical strains. Multiple determinants were found in clinical and meat Enterococcus faecalis isolates. The presence of indistinguishable vanA elements (mostly plasmid borne) and virulence determinants in different species and PFGE-diverse populations in the presence of host-specific purK housekeeping genes suggested that all GRE might be potential reservoirs of resistance determinants and virulence traits transferable to human-adapted clusters

    Nucleation, reorganization and disassembly of an active network from lactose-modified chitosan mimicking biological matrices

    Get PDF
    Developing synthetic materials able to mimic micro- and macrorheological properties of natural networks opens up to novel applications and concepts in materials science. The present contribution describes an active network based on a semi-synthetic polymer, a lactitol-bearing chitosan derivative (Chitlac), and a transient inorganic cross-linker, boric acid. Due to the many and diverse anchoring points for boric acid on the flanking groups of Chitlac, the cross-links constantly break and reform in a highly dynamic fashion. The consequence is a network with unusual non-equilibrium and mechanical properties closely resembling the rheological behavior of natural three-dimensional arrangements and of cytoskeleton. Concepts like network nucleation, reorganization and disassembly are declined in terms of amount of the cross-linker, which acts as a putative motor for remodeling of the network upon application of energy. The out-of-equilibrium and non-linear behavior render the semi-synthetic system of great interest for tissue engineering and for developing in-vitro mimics of natural active matrices

    Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive. Insights from Italy

    Get PDF
    Across the 28 EU member states there were nearly half a million premature deaths in 2015 as a result of exposure to PM2.5, O3 and NO2. To set the target for air quality levels and avoid negative impacts for human and ecosystems health, the National Emission Ceilings Directive (NECD, 2016/2284/EU) sets objectives for emission reduction for SO2, NOx, NMVOCs, NH3 and PM2.5 for each Member State as percentages of reduction to be reached in 2020 and 2030 compared to the emission levels into 2005. One of the innovations of NECD is Article 9, that mentions the issue of “monitoring air pollution impacts” on ecosystems. We provide a clear picture of what is available in term of monitoring network for air pollution impacts on Italian ecosystems, summarizing what has been done to control air pollution and its effects on different ecosystems in Italy. We provide an overview of the impacts of air pollution on health of the Italian population and evaluate opportunities and implementation of Article 9 in the Italian context, as a case study beneficial for all Member States. The results showed that SO42− deposition strongly decreased in all monitoring sites in Italy over the period 1999–2017, while NO3− and NH4+ decreased more slightly. As a consequence, most of the acid-sensitive sites which underwent acidification in the 1980s partially recovered. The O3 concentration at forest sites showed a decreasing trend. Consequently, AOT40 (the metric identified to protect vegetation from ozone pollution) showed a decrease, even if values were still above the limit for forest protection (5000 ppb h−1), while PODy (flux-based metric under discussion as new European legislative standard for forest protection) showed an increase. National scale studies pointed out that PM10 and NO2 induced about 58,000 premature deaths (year 2005), due to cardiovascular and respiratory diseases. The network identified for Italy contains a good number of monitoring sites (6 for terrestrial ecosystem monitoring, 4 for water bodies monitoring and 11 for ozone impact monitoring) distributed over the territory and will produce a high number of monitored parameters for the implementation of the NECD

    Economic losses due to ozone impacts on human health, forest productivity and crop yield across China

    Get PDF
    China's economic growth has significantly increased emissions of tropospheric ozone (O3) precursors, resulting in increased regional O3 pollution. We analyzed data from >1400 monitoring stations and estimated the exposure of population and vegetation (crops and forests) to O3 pollution across China in 2015. Based on WHO metrics for human health protection, the current O3 level leads to +0.9% premature mortality (59,844 additional cases a year) with 96% of populated areas showing O3–induced premature death. For vegetation, O3 reduces annual forest tree biomass growth by 11–13% and yield of rice and wheat by 8% and 6%, respectively, relative to conditions below the respective AOT40 critical levels (CL). These CLs are exceeded over 98%, 75% and 83% of the areas of forests, rice and wheat, respectively. Using O3 exposure–response functions, we evaluated the costs of O3-induced losses in rice (7.5 billion US),wheat(11.1billionUS), wheat (11.1 billion US) and forest production (52.2 billion US)andSOMO35–basedmorbidityforrespiratorydiseases(690.9billionUS) and SOMO35–based morbidity for respiratory diseases (690.9 billion US) and non–accidental mortality (7.5 billion US$), i.e. a total O3-related cost representing 7% of the China Gross Domestic Product in 2015. Keywords: Surface ozone, Human health, Wheat, Rice, Forests, Crops, Risk assessment, Impacts, Economic valuatio

    The colours of the Higgs boson: a study in creativity and science motivation among high-school students in Italy

    Get PDF
    AbstractWith the increasing shift from STEM to STEAM education, arts-based approaches to science teaching and learning are considered promising for aligning school science curricula with the development of twenty-first century skills, including creativity. Yet the impact of STEAM practices on student creativity and specifically on how the latter is associated with science learning outcomes have thus far received scarce empirical support. This paper contributes to this line of research by reporting on a two-wave quantitative study that examines the effect of a long-term STEAM intervention on two cognitive processes associated with creativity (act, flow) and their interrelationships with intrinsic and extrinsic components of science motivation. Using pre- and post-survey data from 175 high-school students in Italy, results show an overall positive effect of the intervention both on the act subscale of creativity and science career motivation, whereas a negative effect is found on self-efficacy. Gender differences in the above effects are also observed. Further, results provide support for the mediating role of self-efficacy in the relationship between creativity and science career motivation. Implications for the design of STEAM learning environments are discussed
    • 

    corecore